Michela Zottini
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michela Zottini.
Plant Physiology | 2009
Roberto De Michele; Emanuela Vurro; Chiara Rigo; Alex Costa; Lisa Elviri; Marilena Di Valentin; Maria Careri; Michela Zottini; Luigi Sanità di Toppi; Fiorella Lo Schiavo
Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants.
FEBS Letters | 2002
Michela Zottini; Elide Formentin; Michela Scattolin; Francesco Carimi; Fiorella Lo Schiavo; Mario Terzi
In this report, we show that nitric oxide affects mitochondrial functionality in plant cells and reduces total cell respiration due to strong inhibition of the cytochrome pathway. The residual respiration depends on the alternative pathway and novel synthesis of alternative oxidase occurs. These modifications are associated with depolarisation of the mitochondrial membrane potential and release of cytochrome c from mitochondria, suggesting a conserved signalling pathway in plants and animals. This signal cascade is triggered at the mitochondrial level and induces about 20% of cell death. In order to achieve a higher level of cell death, the addition of H2O2 is necessary.
Plant Journal | 2010
Alex Costa; Ilaria Drago; Smrutisanjita Behera; Michela Zottini; Paola Pizzo; Julian I. Schroeder; Tullio Pozzan; Fiorella Lo Schiavo
Oxidative stress is a major challenge for all cells living in an oxygen-based world. Among reactive oxygen species, H2O2, is a well known toxic molecule and, nowadays, considered a specific component of several signalling pathways. In order to gain insight into the roles played by H2O2 in plant cells, it is necessary to have a reliable, specific and non-invasive methodology for its in vivo detection. Hence, the genetically encoded H2O2 sensor HyPer was expressed in plant cells in different subcellular compartments such as cytoplasm and peroxisomes. Moreover, with the use of the new green fluorescent protein (GFP)-based Cameleon Ca2+ indicator, D3cpv-KVK-SKL, targeted to peroxisomes, we demonstrated that the induction of cytoplasmic Ca2+ increase is followed by Ca2+ rise in the peroxisomal lumen. The analyses of HyPer fluorescence ratios were performed in leaf peroxisomes of tobacco and pre- and post-bolting Arabidopsis plants. These analyses allowed us to demonstrate that an intraperoxisomal Ca2+ rise in vivo stimulates catalase activity, increasing peroxisomal H2O2 scavenging efficiency.
Plant Cell Reports | 2008
Michela Zottini; Elisabetta Barizza; Alex Costa; Elide Formentin; Cristina Ruberti; Francesco Carimi; Fiorella Lo Schiavo
Agrobacterium-mediated transient assays for the analysis of gene function are used as alternatives to genetic complementation and stable plant transformation. Although such assays are routinely performed in several plant species, they have not yet been successfully applied to grapevines. We explored genetic background diversity of grapevine cultivars and performed agroinfiltration into in vitro cultured plants. By combining different genotypes and physiological conditions, we developed a protocol for efficient transient transformations of selected grapevine cultivars. Among the four cultivars analyzed, Sugraone and Aleatico exhibited high levels of transient transformation. Transient expression occurred in the majority of cells within the infiltrated tissue several days after agroinfiltration and, in a few cases, it later spread to a larger portion of the leaf. Three laboratory strains of Agrobacterium tumefaciens with different virulence levels were used for agroinfiltration assays on grapevine plants. This method promises to be a powerful tool to perform subcellular localization analyses. Grapevine leaf tissues were transformed with fluorescent markers targeted to cytoplasm (free GFP and mRFP1), endoplasmatic reticulum (GFP::HDEL), chloroplast (GAPA1::YFP) and mitochondria (β::GFP). Confocal microscope analyses demonstrated that these subcellular compartments could be easily visualized in grapevine leaf cells. In addition, from leaves of the Sugraone cultivar agroinfiltrated with endoplasmic reticulum-targeted GFP-construct, stable transformed cells were obtained that show the opportunity to convert a transiently transformed leaf tissue into a stably transformed cell line.
Plant Journal | 2012
Giovanna Loro; Ilaria Drago; Tullio Pozzan; Fiorella Lo Schiavo; Michela Zottini; Alex Costa
Here we describe use of a mitochondrial targeted Cameleon to produce stably transformed Arabidopsis plants that enable analyses of mitochondrial Ca²⁺ dynamics in planta and allow monitoring of the intra-mitochondrial Ca²⁺ concentration in response to physiological or environmental stimuli. Transgenic plants co-expressing nuclear and mitochondrial targeted Cameleons were also generated and analyzed. Here we show that mitochondrial Ca²⁺ accumulation is strictly related to the intensity of the cytoplasmic Ca²⁺ increase, demonstrating a tight association between mitochondrial and cytoplasmic Ca²⁺ dynamics. However, under all experimental conditions, mitochondrial Ca²⁺ dynamics were substantially different from those monitored in the cytoplasm, demonstrating that mitochondria do not passively sense cytosolic Ca²⁺, but actively modulate the intra-mitochondrial level of the cation. In particular, our analyses show that the kinetics of Ca²⁺ release from mitochondria are much slower than in the cytoplasm and nucleus. The mechanisms and functional implications of these differences are discussed.
New Phytologist | 2009
Roberto De Michele; Elide Formentin; Marco Todesco; Stefano Toppo; Francesco Carimi; Michela Zottini; Elisabetta Barizza; Alberto Ferrarini; Massimo Delledonne; Paolo Fontana; Fiorella Lo Schiavo
Here, for the first time, a comprehensive transcriptomics study is presented of leaf senescence in the legume model Medicago truncatula, providing a broad overview of differentially expressed transcripts involved in this process. The cDNA-amplification fragment length polymorphism (AFLP) technique was used to identify > 500 genes, which were cloned and sorted into functional categories according to their gene ontology annotation. Comparison between the datasets of Arabidopsis and M. truncatula leaf senescence reveals common physiological events but differences in the nitrogen metabolism and in transcriptional regulation. In addition, it was observed that a minority of the genes regulated during leaf senescence were equally involved in other processes leading to programmed cell death, such as nodule senescence and nitric oxide signalling. This study provides a wide transcriptional profile for the comprehension of key events of leaf senescence in M. truncatula and highlights a possible regulative role for MADS box transcription factors in the terminal phases of the process.
BMC Plant Biology | 2014
Stefania Pilati; Daniele Brazzale; Graziano Guella; Alberto Milli; Cristina Ruberti; Franco Biasioli; Michela Zottini; Claudio Moser
BackgroundThe ripening of fleshy fruits is a complex developmental program characterized by extensive transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft, tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the accumulation of hydrogen peroxide (H2O2) and extensive modulation of reactive oxygen species (ROS) scavenging enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken.ResultsROS-specific staining allowed to visualize not only H2O2 but also singlet oxygen (1O2) in berry skin cells just before color change in distinct subcellular locations, i.e. cytosol and plastids. H2O2 peak in sample skins at véraison was confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosyl diacylglycerols were found peroxidized on one or both α-linolenic fatty acid chains, with a 13(S) absolute configuration implying the action of a specific enzyme. A lipoxygenase (PnLOXA), expressed at véraison and localizing inside the chloroplasts, was indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves.ConclusionsThe present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.
Plant Physiology | 1993
Michela Zottini; Davide Zannoni
Purified mitochondria isolated from pea (Pisum sativum L. cv Alaska) stems and Jerusalem artichoke (Helianthus tuberosus L. cv OB1) tubers were loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fura-2. This made possible the continuous monitoring of free [Ca2+] in the matrix ([Ca2+]m) without affecting the apparent viability of the mitochondria. Pea stem mitochondria contained an initial [Ca2+]m of approximately 60 to 100 nM, whereas [Ca2+]m was severalfold higher (400–600 nM) in mitochondria of Jerusalem artichoke tubers. At low extramitochondrial Ca2+ concentrations ([greater than or equal to]100 nM), there was an energy-dependent membrane potential increase in [Ca2+]m; the final [Ca2+]m was phosphate-dependent in Jerusalem artichoke but was phosphate-independent in pea stem mitochondria. The data presented indicate that (a) there is no absolute requirement for phosphate in Ca2+ uptake; (b) plant mitochondria can accumulate external free Ca2+ by means of an electrophoretic Ca2+ uniporter with an apparent affinity for Ca2+ (Km approximately 150 nM) that is severalfold lower than that measured by conventional methods (isotopes and Ca2+-sensitive electrodes); and (c) [Ca2+]m is within the regulatory range of mammalian intramitochondrial dehydrogenases.
Plant Physiology | 2016
Giovanna Loro; Stephan Wagner; Fabrizio G. Doccula; Smrutisanjita Behera; Stefan Weinl; Joerg Kudla; Markus Schwarzländer; Alex Costa; Michela Zottini
Plants expressing a chloroplast-localized Cameleon Ca2+ probe allow single-organelle analysis of chloroplast Ca2+ dynamics. In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca2+ transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca2+ regulation. So far, monitoring of stromal Ca2+ dynamics in vivo has exclusively relied on using the luminescent Ca2+ probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca2+ sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca2+ dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca2+ dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca2+ increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca2+ spiking as a distinct and previously unknown component of stromal Ca2+ signatures. Spiking was dependent on the availability of cytosolic Ca2+ but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca2+ increase occurred independent of cytosolic Ca2+, suggesting intraorganellar Ca2+ release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca2+ dynamics and to refine the understanding of plastidial Ca2+ regulation.
Plant Biosystems | 2014
Enrico Baldan; Sebastiano Nigris; F. Populin; Michela Zottini; Andrea Squartini; Barbara Baldan
Endophytes are micro-organisms that colonize the internal tissues of plants without inducing signs of negative effects and that can provide benefits to plant health and yield. In the present work, the culturable bacterial endophyte community, colonizing vegetative organs of grapevine, was isolated from surface-sterilized plant tissues and characterized by molecular methods. From roots, shoots and leaves of Vitis vinifera “Glera”, located in six different vineyards throughout the Conegliano-Valdobbiadene DOCG area (Veneto, Italy), 381 culturable strains were successfully isolated; amplified ribosomal DNA restriction analysis and nucleotide sequencing showed that approximately 30% of the endophyte community belonged to the genus Bacillus, which was the most represented; other genera such as Staphylococcus, Microbacterium, Paenibacillus, Curtobacterium, Stenotrophomonas, Variovorax, Micrococcus and Agrococcus were identified. Endophyte community composition within each vine was different in respect to other endophyte populations living in grapevine plants coming from different vineyards; moreover, the bacterial composition changed depending on the season of sampling. The above data highlight the great diversity of culturable bacterial species inhabiting Glera grapevines and open the way for a characterization and selection of strains that could potentially be used to improve the vineyard management for plant growth and yield, plant responses to stresses, biocontrol and biofertilization.