Elisabetta Canetta
Abertay University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabetta Canetta.
Langmuir | 2011
Aitziber Lopez; Elise Degrandi-Contraires; Elisabetta Canetta; Costantino Creton; Joseph L. Keddie; José M. Asua
Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.
Physica A-statistical Mechanics and Its Applications | 2002
Francesco Mallamace; Elisabetta Canetta; Domenico Lombardo; Antonio Mazzaglia; Andrea Romeo; L. Monsù Scolaro; G. Maino
In this work, we study the internal density distribution in a dendrimer or “starburst polymers” system at different generations. We have used different techniques like small angle X-ray scattering, quasi-elastic light scattering and a Molecular dynamics simulation. Obtained data, compared with the literature ones, proposed that lower generation dendrimers display an internal self-similar structure, whereas the higher generations tend to exhibit a spherical homogenous dense structure.
Forensic Science International | 2009
Elisabetta Canetta; Kimberley Montiel; Ashok K. Adya
The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.
ACS Applied Materials & Interfaces | 2009
Tao Wang; Elisabetta Canetta; Tecla G. Weerakkody; Joseph L. Keddie; Urko Rivas
Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.
Langmuir | 2009
Elisabetta Canetta; Jeanne Marchal; C. Lei; Fanny Deplace; Alexander M. König; Costantino Creton; Keltoum Ouzineb; Joseph L. Keddie
Tackifying resins (TRs) are often added to pressure-sensitive adhesive films to increase their peel strength and adhesion energy. In waterborne adhesives, the TR is dispersed in water using surfactants and then blended with colloidal polymers in water (i.e., latex). In such waterborne systems, there are problems with the colloidal stability and difficulty in applying coatings of the particle blends; the films are often hydrophilic and subject to water uptake. Here, an alternative method of making waterborne, tackified adhesives is demonstrated. The TR is incorporated within the core of colloidal polymer particles via miniemulsion polymerization. Atomic force microscopy (AFM) combined with force spectroscopy analysis reveals there is heterogeneity in the distribution of the TR in films made from particle blends and also in films made from miniemulsion polymers. Two populations, corresponding to TR-rich and acrylic-rich components, were identified through analysis of the AFM force-displacement curves. The nanoscale maximum adhesion force and adhesion energy were found to be higher in a miniemulsion film containing 12 wt % tackifying resin in comparison to an equivalent blended film. The macroscale tack and viscoelasticity are interpreted by consideration of the nanoscale structure and properties. The incorporation of tackifying resin through a miniemulsion polymerization process not only offers clear benefits in the processing of the adhesive, but it also leads to enhanced adhesion properties.
Forensic Science International | 2011
Elisabetta Canetta; Ashok K. Adya
Pressure sensitive adhesive (PSA), such as those used in packaging and adhesive tapes, are very often encountered in forensic investigations. In criminal activities, packaging tapes may be used for sealing packets containing drugs, explosive devices, or questioned documents, while adhesive and electrical tapes are used occasionally in kidnapping cases. In this work, the potential of using atomic force microscopy (AFM) in both imaging and force mapping (FM) modes to derive additional analytical information from PSAs is demonstrated. AFM has been used to illustrate differences in the ultrastructural and nanomechanical properties of three visually distinguishable commercial PSAs to first test the feasibility of using this technique. Subsequently, AFM was used to detect nanoscopic differences between three visually indistinguishable PSAs.
Journal of Biomechanical Engineering-transactions of The Asme | 2011
Róbert Kiss; Henry Bock; Steve Pells; Elisabetta Canetta; Ashok K. Adya; Andrew J. Moore; Paul A. De Sousa; Nicholas Willoughby
The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Youngs modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Youngs modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.
Scientific Reports | 2015
Màrius Tarrés; Elisabetta Canetta; Eleanor Paul; Jordan Forbes; Karima Azzouni; Clara Viñas; Francesc Teixidor; Adrian J. Harwood
Cobaltabisdicarbollide (COSAN) [3,3′-Co(1,2-C2B9H11)2]−, is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.
Physics Letters B | 2000
Elisabetta Canetta; G. Maino
Abstract A careful quantum statistical analysis of regular and chaotic dynamical behaviours in shape-transitional regions within the framework of IBM-2 has been performed, thus providing striking evidence that regular patterns extend far away from dynamical symmetry limits, mainly in the case of transitions from deformed (axially symmetric and triaxial) to spherical shapes.
international conference on image analysis and processing | 2011
Elisabetta Canetta; Ashok K. Adya
Nanotechnology tools, such as Atomic Force Microscopy (AFM), are now becoming widely used in life sciences and biomedicine. AFM is a versatile technique that allows studying at the nanoscale the morphological, dynamic, and mechanical properties of biological samples, such as living cells, biomolecules, and tissues in their native state under physiological conditions. In this article, an overview of the principles of AFM will be first presented and this will be followed by discussion of some of our own recent work on the applications of AFM imaging to biomedicine.