Elisabetta M. Zanetti
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabetta M. Zanetti.
International Journal of Fatigue | 2003
Alberto Audenino; V. Crupi; Elisabetta M. Zanetti
Abstract The object of this paper is an investigation of the relationship existing between two experimental techniques, both aimed at the assessment of micro-plastic phenomena and micro-friction inside a material: thermographic analysis and specific damping measurement. A model has been developed here considering the main thermal effects during fatigue tests, and a theoretical relationship between temperature increment and specific damping has been proposed. Successively, an extensive experimentation has been carried on groups of specimens made of two different metals, stressed by means of an Amsler vibrophore. Different stress amplitudes (80–270 MPa) and frequencies (80–160 Hz) have been employed. The analysis of experimental results has allowed the validation of the suggested model, leading, on one side, to the development of a further experimental technique for the evaluation of specific damping, and, on the other side, to the employment of specific damping measurement for the assessment of fatigue in metals.
Journal of Sports Sciences | 2013
Elisabetta M. Zanetti; Cristina Bignardi; Giordano Franceschini; Alberto Audenino
Abstract Artificial turf is being used more and more often. It is more available than natural turf for use, requires much less maintenance and new products are able to comply with sport performance and athletes’ safety. The purpose of this paper is to compare the mechanical and biomechanical responses of two different artificial turf infills (styrene butadiene rubber, from granulated vehicle tires, and thermoplastic rubber granules) and to compare them to the performance of natural fields where amateurs play (beaten earth, substantially). Three mechanical parameters have been calculated from laboratory tests: energy storage, energy losses and surface traction coefficient; results have been correlated with peak accelerations recorded on an instrumented athlete, on the field. The natural ground proved to be stiffer (−15% penetration depth for a given load), and to have a lower dynamic traction coefficient (−48%); the different kinds of infill showed significantly different stiffnesses (varying by more than 23%) and damping behaviour (varying by more than 31%). In running, peak vertical accelerations were lowest in the artificial ground with thermoplastic rubber granules, while, in slalom, both artificial grounds produced higher horizontal peak accelerations compared to the natural ground. Results are discussed in terms of their implications for athletic performance and injury risk.
Medical & Biological Engineering & Computing | 2005
Elisabetta M. Zanetti; V. Crupi; Cristina Bignardi; Pasquale Calderale
Many applications in orthopaedic surgery require the creation of personalised design models that can serve as the basis for navigation in computer aided surgery systems or be used to create a personalised model to perform structural analysis during pre-operative planning or post-operative follow-up. The paper introduces a method for developing a three-dimensional (3D) patient-specific model of a femur bone from an antero-posterior radiograph. A generic femur was employed and was altered on the basis of bone boundaries visible on radiographs. Morphological errors were evaluated against 3D models obtained from computed tomography (CT) scans. When only the antero-posterior radiograph was used, the average radius estimation error was 4.8 mm, the average percentage area estimation error was 14%, and the average percentage estimation error for inertial moments was 15%. If both the medial-lateral and the anterior-posterior radiographs were used, these errors were 2.0 mm, 5% and 7%, respectively. The procedure described can be profitably employed whenever CT scans are not available, such as during a retrospective analysis, or when CT scans cannot be justified because of X-ray exposure and cost considerations.
Biorheology | 2012
Elisabetta M. Zanetti; Michela Perrini; Cristina Bignardi; Alberto Audenino
The fundamental passive mechanical properties of the bladder need to be known in order to design the most appropriate long-term surgical repair procedures and develop materials for bladder reconstruction. This study has focused on the bladder tissue viscoelastic behavior, providing a comprehensive analysis of the effects of fibers orientation, strain rate and loading history. Whole bladders harvested from one year old fat pigs (160 kg approximate weight) were dissected along the apex-to-base direction and samples were isolated from the lateral region of the wall, as well as along apex-to-base and transverse directions. Uniaxial monotonic (stress relaxation) and cyclic tests at different frequencies have been performed with the Bose Electroforce(®) 3200. Normalized stress relaxation functions have been interpolated using a second-order exponential series and loading and unloading stress-strain curves have been interpolated with a non-linear elastic model. The passive mechanical behavior of bladder tissue was shown to be heavily influenced by frequency and loading history, both in monotonic and cyclic tests. The anisotropy of the tissue was evident in monotonic and in cyclic tests as well, especially in tests performed on an exercised tissue and at high frequencies. In contrast, transverse and apex-to-base samples demonstrated an analogous relaxation behavior.
Journal of Biomechanics | 2015
Arturo N. Natali; Alberto Audenino; Walter Artibani; Chiara Giulia Fontanella; Emanuele Luigi Carniel; Elisabetta M. Zanetti
A procedure for the constitutive analysis of bladder tissues mechanical behavior is provided, by using a coupled experimental and computational approach. The first step pertains to the design and development of mechanical tests on specimens from porcine bladders. The bladders have been harvested, and the specimens have been subjected to uniaxial cyclic tests at different strain rates along preferential directions, considering the distribution of tissue fibrous components. Experimental results showed the anisotropic, non-linear and time-dependent stress-strain behavior, due to tissue conformation with fibers distributed along preferential directions and their interaction phenomena with ground substance. In detail, experimental data showed a greater tissue stiffness along transversal direction. Viscous behavior was assessed by strain rate dependence of stress-strain curves and hysteretic phenomena. The second step pertains the development of a specific fiber-reinforced visco-hyperelastic constitutive model, in the light of bladder tissues structural conformation and experimental results. Constitutive parameters have been identified by minimizing the discrepancy between model and experimental data. The agreement between experimental and model results represent a term for evaluating the reliability of the constitutive models by means of the proposed operational procedure.
Journal of Mechanics in Medicine and Biology | 2010
Elisabetta M. Zanetti; Alberto Audenino
A hip prosthesis implant produces a significant deviation in the stress pattern compared with the physiologic condition. In this work, the stress patterns are evaluated experimentally on synthetic femora, by means of thermoelastic stress analysis. Two factors have been considered: stem implantation and head offset. Stress maps were obtained using differential thermography and correlated to these factors. Thermoelastic stress maps have demonstrated to be sensitive to the implant and the head offset. In detail, the standard deviation of stresses can reduce from –5% to –50% (with reference to the physiologic one), depending on stem design; peak stresses change their position or disappear for different implant position or press-fitting, the sensitivity of average stresses to the offset is at least equal to 0.07 MPa/mm. On the whole, a methodology was developed, allowing the experimental evaluation and comparison of the stress distributions produced by different implants.
Journal of Dynamic Systems Measurement and Control-transactions of The Asme | 1998
Alberto Audenino; Elisabetta M. Zanetti; Pasquale Calderale
When a metallic material is highly stressed, its internal specific damping capacity increases showing a nonlinear behavior. In spite of this, the most part of experimental methods employ nonhomogeneous stress fields measuring only a volumetric average often called structural damping. To overcome this problem the procedure herein presented extends the applicability of the plain traction or compression methods to higher frequency range (up to 300 Hz). The introduced methodology corrects for elastic energy and dissipated energy relative to the test machine and to the fixtures. The experimental procedure is based on the acquisition of a decay signal when the test machine excitation force has been removed. Two different methods to extract the pattern of internal damping versus material strain have been compared : one is based on least square exponential fitting while the other employs an autoregressive model. Best results have been obtained combining the two techniques taking into account also the variation of Youngs modulus with strain. The resulting curves of the loss factor as a function of strains amplitude for three steels and two cast irons are presented.
Australasian Medical Journal | 2017
Elisabetta M. Zanetti; Alessandra Aldieri; Mara Terzini; Michele Calã; Giordano Franceschini; Cristina Bignardi
Background Additive manufacturing technologies are being enthusiastically adopted by the orthopaedic community since they are providing new perspectives and new possibilities. First applications were finalised for educational purposes, pre-operative planning, and design of surgical guides; recent applications also encompass the production of implantable devices where 3D printing can bring substantial benefits such as customization, optimization, and manufacturing of very complex geometries. The conceptual smoothness of the whole process may lead to the idea that any medical practitioner can use a 3D printer and her/his imagination to design and produce novel products for personal or commercial use. Aims Outlining how the whole process presents more than one critical aspects, still demanding further research in order to allow a safe application of this technology for fully-custom design, in particular confining attention to orthopaedic/orthodontic prostheses defined as components responding mainly to a structural function. Methods Current knowledge of mechanical properties of additively manufactured components has been examined along with reasons why the behaviour of these components might differ from traditionally manufactured components. The structural information still missing for mechanical design is outlined. Results Mechanical properties of additively manufactured components are not completely known, and especially fatigue limit needs to be examined further. Conclusion At the present stage, with reference to load-bearing implants subjected to many loading cycles, the indication of custom-made additively manufactured medical devices should be restricted to the cases with no viable alternative.
The Open Medical Informatics Journal | 2009
Elisabetta M. Zanetti; M. Salaorno; Giovanni Grasso; Alberto Audenino
A global study of geometry and material properties of orthopedic screws was performed, considering not only the effect of each single factor (screw pitch, number of threads, fillet angle, etc.) but also their interactions with respect to bone density. The stress patterns resulting from different screw geometries and bone densities were analyzed using finite element techniques, taking into account different levels of osseointegration between the screw and the bone. These numerical models where validated through experimental pull-out tests, where a pull out force of 120 N produced localized failure of the last thread (stresses above 0.42 MPa). The results of the numerical simulations were then summarised using a multi-factorial parametric analysis. This demonstrated the great relevance of the interaction between bone density and screw pitch, showing that the optimal screw pitch can vary by more than 25% for different densities (0.35 g/cm3 and 0.47 g/cm3, respectively). The parameters calculated by means of the multi-factorial analysis allow the pull out force to be estimated for different osseointegration levels, different screw geometries and material properties, and for different bone densities. The final objective is to determine the best choice of implant for each individual patient.
Medical Engineering & Physics | 1996
Alberto Audenino; Elisabetta M. Zanetti; Pasquale Calderale
Video-densitometric analysis has proved useful in the study of bone remodelling, however, for more efficient results, an investigation procedure that enables the comparison of X-rays is needed. In the present research an automated method has been developed which considerably speeds up the entire procedure through the implementation of specially designed C++ software. At present, a sequence of six X-rays can be analyzed in about 1 h irrespective of the number of areas to be investigated, which can be arbitrarily increased (200 or more). Analysis is fast as well as more reliable and accurate. In clinical practice, the results offer an effective support to observation on the biomechanical behaviour of bone implant systems.