Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Marongiu is active.

Publication


Featured researches published by Elisabetta Marongiu.


BioMed Research International | 2014

Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents

Antonio Claudio Lucas da Nóbrega; Donal S. O'Leary; Bruno M. Silva; Elisabetta Marongiu; Massimo F. Piepoli; Antonio Crisafulli

During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.


Current Cardiology Reviews | 2014

Cardioprotection Acquired Through Exercise: The Role of Ischemic Preconditioning

Elisabetta Marongiu; Antonio Crisafulli

A great bulk of evidence supports the concept that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. These exercise-induced beneficial effects on the myocardium are reached by means of the reduction of several risk factors relating to cardiovascular disease, such as high cholesterol, hypertension, obesity etc. Furthermore, it has been demonstrated that exercise can reproduce the “ischemic preconditioning” (IP), which refers to the capacity of short periods of ischemia to render the myocardium more resistant to subsequent ischemic insult and to limit infarct size during prolonged ischemia. However, IP is a complex phenomenon which, along with infarct size reduction, can also provide protection against arrhythmia and myocardial stunning due to ischemia-reperfusion. Several clues demonstrate that preconditioning may be directly induced by exercise, thus inducing a protective phenotype at the heart level without the necessity of causing ischemia. Exercise appears to act as a physiological stress that induces beneficial myocardial adaptive responses at cellular level. The purpose of the present paper is to review the latest data on the role played by exercise in triggering myocardial preconditioning.


Nutrients | 2014

Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

Marco Pinna; Silvana Roberto; Raffaele Milia; Elisabetta Marongiu; Sergio Olla; Andrea Loi; G. M. Migliaccio; Johnny Padulo; Carmine Orlandi; Filippo Tocco; Alberto Concu; Antonio Crisafulli

The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2), carbon dioxide production (VCO2), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.


Journal of Applied Physiology | 2012

Altered hemodynamics during muscle metaboreflex in young type 1 diabetes patients

Silvana Roberto; Elisabetta Marongiu; Marco Pinna; Luca Angius; Sergio Olla; Pierpaolo Bassareo; Filippo Tocco; Alberto Concu; Raffaele Milia; Antonio Crisafulli

A reduction in catecholamine levels during exercise has been described in young subjects with type 1 diabetes mellitus (DM1). It has been suggested that type 1 diabetes per se is associated with the loss of sympathetic response before any clinical evidence. Considering that an increase in sympathetic drive is required for normal cardiovascular response to muscle metaboreflex, the aim of this study was to assess the hemodynamics during metaboreflex in DM1 patients. Impedance cardiography was used to measure hemodynamics during metaboreflex activation, obtained through postexercise ischemia in 14 DM1 patients and in 11 healthy controls (CTL). Principal results were: 1) blunted blood pressure response during metaboreflex was observed in DM1 patients compared with the CTL; 2) reduced capacity to increase systemic vascular resistance was also witnessed in DM1 subjects; 3) DM1 subjects reported higher stroke volumes as a consequence of reduced cardiac afterload compared with the CTL, which led to a more evident cardiac output response, which partially compensated for the lack of vasoconstriction. These facts suggest that cardiovascular regulation was altered in DM1 patients and that there was a reduced capacity to increase sympathetic tone, even in the absence of any overt clinical sign. The metaboreflex test appears to be a valid tool to detect early signs of this cardiovascular dysregulation.


International Journal of Sports Medicine | 2014

Muscle ischemic preconditioning does not improve performance during self-paced exercise

Filippo Tocco; Elisabetta Marongiu; Giovanna Maria Ghiani; Irene Sanna; Girolamo Palazzolo; Sergio Olla; Matteo Pusceddu; P. Sanna; F Corona; Alberto Concu; Antonio Crisafulli

Muscle ischemic preconditioning (IP) has been found to improve exercise performance in laboratory tests. This investigation aims at verifying whether performance is improved by IP during self-paced exercise (SPE) in the field. 11 well-trained male runners performed 3 randomly assigned 5 000 m self-paced running tests on an outdoor track. One was the reference (RT) test, while the others were performed following muscle IP (IPT) and a control sham test (ST). Average speeds were measured during each test. Mean values in oxygen uptake (VO2), aerobic energy cost (AEC) during race and post-race blood lactate (BLa) were gathered. Data showed that none of the studied variables were affected by IPT or ST with respect to the RT test. Average speeds were 4.63±0.31, 4.62±0.31 and 4.60±0.25 m·s(-1) for the RT, the ST and the IPT tests, respectively. Moreover, there was no difference among tests in speed reached during each lap. VO2 was 3.5±0.69, 3.74±0.85 and 3.62±1.19 l·min(-1). AEC was 1.04±0.15, 1.08±0.1 and 1.09±0.15 kcal·kg(-1)·km(-1). Finally, post-race BLa levels reached 12.85±3.54, 11.88±4.74 and 12.82±3.6 mmol·l(-1). These findings indicate that performance during SPE is not ameliorated by ischemic preconditioning, thereby indicating that IP is not suitable as an ergogenic aid.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Effects of acute vasodilation on the hemodynamic response to muscle metaboreflex

Elisabetta Marongiu; Massimo F. Piepoli; Raffaele Milia; Luca Angius; Marco Pinna; Pierpaolo Bassareo; Silvana Roberto; Filippo Tocco; Alberto Concu; Antonio Crisafulli

The aim of the present study was to test the contribution of stroke volume (SV) in hemodynamic response to muscle metaboreflex activation in healthy individuals. We hypothesized that an acute decrease in cardiac afterload and preload due to the administration of a vasodilating agent could reduce postexercise muscle ischemia (PEMI)-induced SV response. Ten healthy males (age 33.6 ± 1.3 yr) were enrolled and randomly assigned to the following study protocol: 1) PEMI session, 2) control exercise recovery (CER) session, 3) PEMI after sublingual administration of 5 mg of isosorbide dinitrate (ISDN), and 4) CER after ISDN. Central hemodynamics were evaluated by means of impedance cardiography. The main findings were a blunted SV response during metaboreflex following acute arterial and venous vasodilation, associated with a reduction in cardiac diastolic time and filling, and a decrement of systemic vascular resistance. These hemodynamic changes restrain blood pressure response during metaboreflex activation. Our results indicate that hemodynamic response to metaboreflex activation is a highly integrated phenomenon encompassing complex interplay between heart rate, cardiac performance, preload, and afterload and that impairment of one or more of these parameters leads to altered hemodynamic response to metaboreflex.


Journal of Applied Physiology | 2013

Progressive improvement in hemodynamic response to muscle metaboreflex in heart transplant recipients

Antonio Crisafulli; Filippo Tocco; Raffaele Milia; Luca Angius; Marco Pinna; Sergio Olla; Silvana Roberto; Elisabetta Marongiu; Maurizio Porcu; Alberto Concu

Exercise capacity remains lower in heart transplant recipients (HTRs) following transplant compared with normal subjects, despite improved cardiac function. Moreover, metaboreceptor activity in the muscle has been reported to increase. The aim of the present investigation was to assess exercise capacity together with metaboreflex activity in HTR patients for 1 yr following heart transplant, to test the hypothesis that recovery in exercise capacity was paralleled by improvements in response to metaboreflex. A cardiopulmonary test for exercise capacity and Vo(2max) and hemodynamic response to metaboreflex activation obtained by postexercise ischemia were gathered in six HTRs and nine healthy controls (CTL) four times: at the beginning of the study (T0, 42 ± 6 days after transplant), at the 3rd, 6th, and 12th month after TO (T1, T2, and T3). The main results were: 1) exercise capacity and Vo(2max) were seen to progressively increase in HTRs; 2) at T0 and T1, HTRs achieved a higher blood pressure response in response to metaboreflex compared with CTL, and this difference disappeared at T2 and T3; and 3) this exaggerated blood pressure response was the result of a systemic vascular resistance increment. This study demonstrates that exercise capacity progressively improves in HTRs after transplant and that this phenomenon is accompanied by a progressive reduction of the metaboreflex-induced increase in blood pressure and systemic vascular resistance. These facts indicate that, despite improved cardiac function, resetting of cardiovascular regulation in HTRs requires months.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Ischemic preconditioning reduces hemodynamic response during metaboreflex activation

Gabriele Mulliri; Gianmarco Sainas; Sara Magnani; Girolamo Palazzolo; Nicola Milia; Andrea Orrù; Silvana Roberto; Elisabetta Marongiu; Raffaele Milia; Antonio Crisafulli

Ischemic preconditioning (IP) has been shown to improve exercise performance and to delay fatigue. However, the precise mechanisms through which IP operates remain elusive. It has been hypothesized that IP lowers the sensation of fatigue by reducing the discharge of group III and IV nerve endings, which also regulate hemodynamics during the metaboreflex. We hypothesized that IP reduces the blood pressure response during the metaboreflex. Fourteen healthy males (age between 25 and 48 yr) participated in this study. They underwent the following randomly assigned protocol: postexercise muscle ischemia (PEMI) test, during which the metaboreflex was elicited after dynamic handgrip; control exercise recovery session (CER) test; and PEMI after IP (IP-PEMI) test. IP was obtained by occluding forearm circulation for three cycles of 5 min spaced by 5 min of reperfusion. Hemodynamics were evaluated by echocardiography and impedance cardiography. The main results were that after IP the mean arterial pressure response was reduced compared with the PEMI test (means ± SD +3.37 ± 6.41 vs. +9.16 ± 7.09 mmHg, respectively). This was the consequence of an impaired venous return that impaired the stroke volume during the IP-PEMI more than during the PEMI test (-1.43 ± 15.35 vs. +10.28 ± 10.479 ml, respectively). It was concluded that during the metaboreflex, IP affects hemodynamics mainly because it impairs the capacity to augment venous return and to recruit the cardiac preload reserve. It was hypothesized that this is the consequence of an increased nitric oxide production, which reduces the possibility to constrict venous capacity vessels.


Journal of Physiological Sciences | 2013

Assessment of the specificity of cardiopulmonary response during tethered swimming using a new snorkel device

Marco Pinna; Raffaele Milia; Silvana Roberto; Elisabetta Marongiu; Sergio Olla; Andrea Loi; Matteo Ortu; G. M. Migliaccio; Filippo Tocco; Alberto Concu; Antonio Crisafulli

This study aimed at comparing maximal oxygen uptake (VO2max), maximal heart rate (HRmax), and anaerobic threshold (AT) obtained from tethered swimming (SW) and three other testing procedures: cycling (CY), running (RU), and arm cranking (AC). Variables were assessed in 12 trained male swimmers by a portable gas analyzer connected to a modified snorkel system to allow expired gases collection during swimming. Athletes exhibited a higher VO2max during the SW test as compared to the CY and the AC tests. There was no significant difference in VO2max between the SW and the RU test, but the Bland and Altman plot highlighted a poor agreement between results. Moreover, AT occurred at higher workloads during SW in comparison to the other tests. These results do not support the use of any unspecific testing procedures to estimate VO2max, HRmax, and AT for swimming.


BioMed Research International | 2015

Cardiovascular Reflexes Activity and Their Interaction during Exercise.

Antonio Crisafulli; Elisabetta Marongiu; Shigehiko Ogoh

Cardiac output and arterial blood pressure increase during dynamic exercise notwithstanding the exercise-induced vasodilation due to functional sympatholysis. These cardiovascular adjustments are regulated in part by neural reflexes which operate to guarantee adequate oxygen supply and by-products washout of the exercising muscles. Moreover, they maintain adequate perfusion of the vital organs and prevent excessive increments in blood pressure. In this review, we briefly summarize neural reflexes operating during dynamic exercise with particular emphasis on their interaction.

Collaboration


Dive into the Elisabetta Marongiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Olla

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Pinna

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar

Andrea Loi

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge