Elisaveta P. Petkova
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisaveta P. Petkova.
Environmental Health Perspectives | 2015
Antonio Gasparrini; Yuming Guo; Masahiro Hashizume; Patrick L. Kinney; Elisaveta P. Petkova; Eric Lavigne; Antonella Zanobetti; Joel Schwartz; Aurelio Tobías; Michela Leone; Shilu Tong; Yasushi Honda; Ho Kim; Ben Armstrong
Background Recent investigations have reported a decline in the heat-related mortality risk during the last decades. However, these studies are frequently based on modeling approaches that do not fully characterize the complex temperature–mortality relationship, and are limited to single cities or countries. Objectives We assessed the temporal variation in heat–mortality associations in a multi-country data set using flexible modelling techniques. Methods We collected data for 272 locations in Australia, Canada, Japan, South Korea, Spain, the United Kingdom, and the United States, with a total 20,203,690 deaths occurring in summer months between 1985 and 2012. The analysis was based on two-stage time-series models. The temporal variation in heat–mortality relationships was estimated in each location with time-varying distributed lag nonlinear models, expressed through an interaction between the transformed temperature variables and time. The estimates were pooled by country through multivariate meta-analysis. Results Mortality risk due to heat appeared to decrease over time in several countries, with relative risks associated to high temperatures significantly lower in 2006 compared with 1993 in the United States, Japan, and Spain, and a nonsignificant decrease in Canada. Temporal changes are difficult to assess in Australia and South Korea due to low statistical power, and we found little evidence of variation in the United Kingdom. In the United States, the risk seems to be completely abated in 2006 for summer temperatures below their 99th percentile, but some significant excess persists for higher temperatures in all the countries. Conclusions We estimated a statistically significant decrease in the relative risk for heat-related mortality in 2006 compared with 1993 in the majority of countries included in the analysis. Citation Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, Zanobetti A, Schwartz JD, Tobias A, Leone M, Tong S, Honda Y, Kim H, Armstrong BG. 2015. Temporal variation in heat–mortality associations: a multicountry study. Environ Health Perspect 123:1200–1207; http://dx.doi.org/10.1289/ehp.1409070
Epidemiology | 2014
Elisaveta P. Petkova; Antonio Gasparrini; Patrick L. Kinney
Background: Heat is recognized as one of the deadliest weather-related phenomena. Although the impact of high temperatures on mortality has been a subject of extensive research, few previous studies have assessed the impact of population adaptation to heat. Methods: We examined adaptation patterns by analyzing daily temperature and mortality data spanning more than a century in New York City. Using a distributed-lag nonlinear model, we analyzed the heat-mortality relation in adults age 15 years or older in New York City during 2 periods: 1900–1948 and 1973–2006, to quantify population adaptation to high temperatures over time. Results: During the first half of the century, the decade-specific relative risk of mortality at 29°C vs. 22°C ranged from 1.30 (95% confidence interval [CI]= 1.25–1.36) in the 1910s to 1.43 (1.37–1.49) in the 1900s. Since the 1970s, however, there was a gradual and substantial decline in the relative risk, from 1.26 (1.22–1.29) in the 1970s to 1.09 (1.05–1.12) in the 2000s. Age-specific analyses indicated a greater risk for people age 65 years and older in the first part of the century, but there was less evidence for enhanced risk among this older age group in more recent decades. Conclusion: The excess mortality with high temperatures observed between 1900 and 1948 was substantially reduced between 1973 and 2006, indicating population adaption to heat in recent decades. These findings may have implications for projecting future impacts of climate change on mortality.
Environmental Research Letters | 2015
Patrick L. Kinney; Joel Schwartz; Mathilde Pascal; Elisaveta P. Petkova; Alain Le Tertre; Sylvia Medina; Robert Vautard
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Air Quality, Atmosphere & Health | 2013
Elisaveta P. Petkova; Darby Jack; Nicole Volavka-Close; Patrick L. Kinney
Rapid urban population growth, air pollution emissions, and changing patterns of disease in African cities may increase the burden of air pollution-related morbidity and mortality in coming decades. Yet, air monitoring is limited across the continent and many countries lack air quality standards. This paper focuses on particulate matter (PM) pollution, one of the most relevant and widely used indicators of urban air quality. We provide an overview of published PM monitoring studies in Africa, outline major themes, point out data gaps, and discuss strategies for addressing particulate air pollution in rapidly growing African cities. Our review reveals that, although few studies have reported annual mean levels of coarse and fine particles, collective evidence from short- and long-term air monitoring studies across urban Africa demonstrates that pollution levels often exceed international guidelines. Furthermore, pollution levels may be rising as a result of increased motor vehicle traffic building on already high background concentrations of PM in many locations due to climatic and geographic conditions. Biomass burning and industrial activities, often located in cities, further exacerbate levels of PM. Despite the health risks this situation presents, air quality programs, particularly in sub-Saharan Africa, have been stalled or discontinued in recent years. Implementation of systematic PM data collection would enable air pollution-related health impact assessments, the development of strategies to reduce the air pollution health burden, and facilitate urban planning and transportation policy as it relates to air quality and health.
International Journal of Environmental Research and Public Health | 2013
Elisaveta P. Petkova; Radley M. Horton; Daniel A. Bader; Patrick L. Kinney
Increased heat-related mortality is projected to be among the major impacts of climate change on human health, and the United States urban Northeast region is likely to be particularly vulnerable. In support of regional adaptation planning, quantitative information is needed on potential future health responses at the urban and regional scales. Here, we present future projections of heat-related mortality in Boston, New York and Philadelphia utilizing downscaled next-generation climate models and Representative Concentration Pathways (RCPs) developed in support of the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5). Our analyses reveal that heat-related mortality rates per 100,000 of population during the baseline period between 1985 and 2006 were highest in Philadelphia followed by New York City and Boston. However, projected heat-related mortality rates in the 2020s, 2050s and 2080s were highest in New York City followed by Philadelphia and Boston. This study may be of value in developing strategies for reducing the future impacts of heat and building climate change resilience in the urban Northeast region.
International Journal of Environmental Research and Public Health | 2014
Elisaveta P. Petkova; Daniel A. Bader; G. Brooke Anderson; Radley M. Horton; Kim Knowlton; Patrick L. Kinney
Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.
Environmental Health Perspectives | 2016
Elisaveta P. Petkova; Jan Vink; Radley M. Horton; Antonio Gasparrini; Daniel A. Bader; Joe D. Francis; Patrick L. Kinney
Background: High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. Objectives: The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. Methods: We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature–mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). Results: The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. Conclusions: These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47–55; http://dx.doi.org/10.1289/EHP166
International Journal of Environmental Research and Public Health | 2015
Elisaveta P. Petkova; Kristie L. Ebi; Derrin Culp; Irwin E. Redlener
The impacts of climate change on human health have been documented globally and in the United States. Numerous studies project greater morbidity and mortality as a result of extreme weather events and other climate-sensitive hazards. Public health impacts on the U.S. Gulf Coast may be severe as the region is expected to experience increases in extreme temperatures, sea level rise, and possibly fewer but more intense hurricanes. Through myriad pathways, climate change is likely to make the Gulf Coast less hospitable and more dangerous for its residents, and may prompt substantial migration from and into the region. Public health impacts may be further exacerbated by the concentration of people and infrastructure, as well as the region’s coastal geography. Vulnerable populations, including the very young, elderly, and socioeconomically disadvantaged may face particularly high threats to their health and well-being. This paper provides an overview of potential public health impacts of climate variability and change on the Gulf Coast, with a focus on the region’s unique vulnerabilities, and outlines recommendations for improving the region’s ability to minimize the impacts of climate-sensitive hazards. Public health adaptation aimed at improving individual, public health system, and infrastructure resilience is urgently needed to meet the challenges climate change may pose to the Gulf Coast in the coming decades.
Annals of the New York Academy of Sciences | 2015
Patrick L. Kinney; Thomas Matte; Kim Knowlton; Jaime Madrigano; Elisaveta P. Petkova; Kate R. Weinberger; Ashlinn Quinn; Mark Arend; Julie Pullen
Recent experience from Hurricane Sandy and high-temperature episodes has clearly demonstrated that the health of New Yorkers can be compromised by extreme coastal storms and heat events. Health impacts that can result from exposure to extreme weather events include direct loss of life, increases in respiratory and cardiovascular diseases, and compromised mental health. Other related health stressors—such as air pollution, pollen, and vector-borne, water-borne, and food-borne diseases—can also be influenced by weather and climate. Figure 5.1 illustrates the complex pathways linking extreme weather events to adverse health outcomes in New York City. New York City and the surrounding metropolitan region face potential health risks related to two principal climate hazards: (1) increasing temperatures and heat waves, and (2) coastal storms and flooding. The health impacts of these hazards depend in turn on myriad pathways, the most important of which are illustrated in the figure. Figure 5.1 Pathways linking climate hazards to health impacts in New York City. Although New York City is one of the best-prepared and most climate-resilient cities in the world, there remain significant potential vulnerabilities related to climate variability and change. As part of the NPCC2 process, a team of local climate and health specialists was mobilized to assess current vulnerabilities and to identify strategies that could enhance the resilience of New York City to adverse health impacts from climate events. The goal was to highlight some of the important climate-related health challenges that New York City is currently facing or may face in the future due to climate variability and change, based on emerging scientific understanding. As indicated in Figure 5.1, health vulnerabilities can be magnified when critical infrastructure is compromised. Critical infrastructure is a highly complex, heterogeneous, and interdependent mix of facilities, systems, and functions that are vulnerable to a wide variety of threats, including extreme weather events. For example, delivery of electricity to households depends on a multi-faceted electrical grid system that is susceptible to blackouts that can occur during heat waves. These, in turn, can expose people to greater risk of contact with exposed wires or to greater heat stress due to failure of air conditioning. Understanding and predicting the impacts that extreme weather events may have on health in New York City require careful analysis of these interactions. Two recent plans to enhance climate resiliency in New York City have been released. A Stronger, More Resilient New York (City of New York, 2013) was developed in the aftermath of Hurricane Sandy by a task force of representatives from City agencies and consultants. This plan was informed by a detailed analysis of the impacts of Hurricane Sandy on infrastructure and the built environment and by the NPCC’s updated 2013 climate projections for the New York metropolitan region. It includes more than 250 initiatives and actionable recommendations addressing 14 domains of the built environment and infrastructure including the healthcare system and several other domains relevant to protecting public health. In addition, the 2014 New York City Hazard Mitigation Plan (HMP) (City of New York, 2014), developed by the NYC Office of Emergency Management in collaboration with the Department of City Planning, updated the 2009 HMP and assesses risks from multiple hazards that threaten New York City. These include but are not limited to several climate-related hazards such as coastal storms and heat waves, and it lays out comprehensive strategies and plans to address these hazards. Many of the measures recommended by A Stronger, More Resilient New York and the HMP have already been implemented, are in progress, or are planned (City of New York, 2013; 2014). This chapter does not include a detailed review of these plans, which would be beyond the expertise and charge of the contributors. Nonetheless, the recommendations in this chapter do broadly support the plans laid out in A Stronger, More Resilient New York and the 2014 HMP, and these are referenced at several points where they are especially relevant. Here we focus on summarizing and synthesizing the emerging scientific knowledge on climate-related health hazards, knowledge that can inform ongoing preparedness planning. Key terms related to climate variability and change as they are applied in the health sector are defined in Box 5.1. This is followed by sections describing health risks, vulnerabilities, and resilience strategies for coastal storms and extreme heat events. We then briefly discuss the interactions of climate change with air pollution, pollen, vector-borne diseases, and water- and food-borne diseases. We conclude with recommendations for research and resiliency planning. Box 5.1 Definitions of key cross-cutting terms in the health context Adaptation Initiatives and measures to reduce the vulnerability of natural and human systems against actual or expected climate change effects. Various types of adaptation exist, such as anticipatory and reactive, private and public, and autonomous and planned. For health, physiological adaptation is also relevant.
Influenza and Other Respiratory Viruses | 2014
Wan Yang; Elisaveta P. Petkova; Jeffrey Shaman
The 1918 influenza pandemic caused disproportionately high mortality among certain age groups. The mechanisms underlying these differences are not fully understood.