Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Jacobsen is active.

Publication


Featured researches published by Elizabeth A. Jacobsen.


Journal of Experimental Medicine | 2008

Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

Elizabeth A. Jacobsen; Sergei I. Ochkur; R.S. Pero; Anna G. Taranova; Cheryl A. Protheroe; Dana Colbert; Nancy A. Lee; James J. Lee

The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells.


Clinical & Experimental Allergy | 2010

Eosinophils in health and disease: The LIAR hypothesis

James J. Lee; Elizabeth A. Jacobsen; Michael P. McGarry; Robert P. Schleimer; Nancy A. Lee

Discussions of eosinophils are often descriptions of end‐stage effector cells with destructive capabilities mediated predominantly by released cytotoxic cationic granule proteins. Moreover, eosinophils in the medical literature are invariably associated with the pathologies linked with helminth infections or allergic diseases such as asthma. This has led to an almost fatalist view of eosinophil effector functions and associated therapeutic strategies targeting these cells that would make even William of Ockham proud – eosinophil effector functions have physiological consequences that increase patient morbidity/mortality and ‘the only good eosinophils are dead eosinophils’. Unfortunately, the strengths of dogmas are also their greatest weaknesses. Namely, while the repetitive proclamation of dogmatic concepts by authoritative sources (i.e. reviews, meeting proceedings, textbooks, etc.) builds consensus within the medical community and lower the entropies surrounding difficult issues, they often ignore not easily explained details and place diminished importance on alternative hypotheses. The goal of this perspective is twofold: (i) we will review recent observations regarding eosinophils and their activities as well as reinterpret earlier data as part of the synthesis of a new paradigm. In this paradigm, we hypothesize that eosinophils accumulate at unique sites in response to cell turnover or in response to local stem cell activity(ies). We further suggest that this accumulation is part of one or more mechanisms regulating tissue homeostasis. Specifically, instead of immune cells exclusively mediating innate host defence, we suggest that accumulating tissue eosinophils are actually regulators of Local Immunity And/or Remodeling/Repair in both health and disease – the LIAR hypothesis; (ii) we want to be inflammatory (pun intended!) and challenge the currently common perspective of eosinophils as destructive end‐stage effector cells. Our hope is to create more questions than we answer and provoke everyone to spend countless hours simply to prove us wrong!


Journal of Immunology | 2007

Coexpression of IL-5 and Eotaxin-2 in Mice Creates an Eosinophil-Dependent Model of Respiratory Inflammation with Characteristics of Severe Asthma

Sergei I. Ochkur; Elizabeth A. Jacobsen; Cheryl A. Protheroe; Travis L. Biechele; R.S. Pero; Michael P. McGarry; Huiying Wang; K.R. O'Neill; Dana Colbert; Thomas V. Colby; Huahao Shen; Michael R. Blackburn; Charles C. Irvin; James J. Lee; Nancy A. Lee

Mouse models of allergen provocation and/or transgenic gene expression have provided significant insights regarding the cellular, molecular, and immune responses linked to the pathologies occurring as a result of allergic respiratory inflammation. Nonetheless, the inability to replicate the eosinophil activities occurring in patients with asthma has limited their usefulness to understand the larger role(s) of eosinophils in disease pathologies. These limitations have led us to develop an allergen-naive double transgenic mouse model that expresses IL-5 systemically from mature T cells and eotaxin-2 locally from lung epithelial cells. We show that these mice develop several pulmonary pathologies representative of severe asthma, including structural remodeling events such as epithelial desquamation and mucus hypersecretion leading to airway obstruction, subepithelial fibrosis, airway smooth muscle hyperplasia, and pathophysiological changes exemplified by exacerbated methacholine-induced airway hyperresponsiveness. More importantly, and similar to human patients, the pulmonary pathologies observed are accompanied by extensive eosinophil degranulation. Genetic ablation of all eosinophils from this double transgenic model abolished the induced pulmonary pathologies, demonstrating that these pathologies are a consequence of one or more eosinophil effector functions.


Journal of Immunology | 2011

Eosinophils Regulate Dendritic Cells and Th2 Pulmonary Immune Responses following Allergen Provocation

Elizabeth A. Jacobsen; Katie R. Zellner; Dana Colbert; Nancy A. Lee; James J. Lee

Reports have recently suggested that eosinophils have the potential to modulate allergen-dependent pulmonary immune responses. The studies presented expand these reports demonstrating in the mouse that eosinophils are required for the allergen-dependent Th2 pulmonary immune responses mediated by dendritic cells (DCs) and T lymphocytes. Specifically, the recruitment of peripheral eosinophils to the pulmonary lymphatic compartment(s) was required for the accumulation of myeloid DCs in draining lymph nodes and, in turn, Ag-specific T effector cell production. These effects on DCs and Ag-specific T cells did not require MHC class II expression on eosinophils, suggesting that these granulocytes have an accessory role as opposed to direct T cell stimulation. The data also showed that eosinophils uniquely suppress the DC-mediated production of Th17 and, to smaller degree, Th1 responses. The cumulative effect of these eosinophil-dependent immune mechanisms is to promote the Th2 polarization characteristic of the pulmonary microenvironment after allergen challenge.


Gut | 2015

Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis

Joanne C. Masterson; Eóin N. McNamee; Sophie Fillon; Lindsay Hosford; Rachel Harris; Shahan D. Fernando; Paul Jedlicka; Ryo Iwamoto; Elizabeth A. Jacobsen; Cheryl A. Protheroe; Holger K. Eltzschig; Sean P. Colgan; Makoto Arita; James J. Lee; Glenn T. Furuta

Objective Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Design Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Results Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Conclusions Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators.


Clinical & Experimental Allergy | 2014

Re-defining the unique roles for eosinophils in allergic respiratory inflammation

Elizabeth A. Jacobsen; Nancy A. Lee; James J. Lee

The role of eosinophils in the progression and resolution of allergic respiratory inflammation is poorly defined despite the commonality of their presence and in some cases their use as a biomarker for disease severity and/or symptom control. However, this ambiguity belies the wealth of insights that have recently been gained through the use of eosinophil‐deficient/attenuated strains of mice that have demonstrated novel immunoregulatory and remodelling/repair functions for these cells in the lung following allergen provocation. Specifically, studies of eosinophil‐deficient mice suggest that eosinophils contribute to events occurring in the lungs following allergen provocation at several key moments: (i) the initiating phase of events leading to Th2‐polarized pulmonary inflammation, (ii) the suppression Th1/Th17 pathways in lung‐draining lymph nodes, (iii) the recruitment of effector Th2 T cells to the lung, and finally, (iv) mechanisms of inflammatory resolution that re‐establish pulmonary homoeostasis. These suggested functions have recently been confirmed and expanded upon using allergen provocation of an inducible eosinophil‐deficient strain of mice (iPHIL) that demonstrated an eosinophil‐dependent mechanism(s) leading to Th2 dominated immune responses in the presence of eosinophils in contrast to neutrophilic as well as mixed Th1/Th17/Th2 variant phenotypes in the absence of eosinophils. These findings highlighted that eosinophils are not exclusively downstream mediators controlled by T cells, dendritic cells (DC) and/or innate lymphocytic cells (ILC2). Instead, eosinophils appear to be more aptly described as significant contributors in complex interrelated pathways that lead to pulmonary inflammation and subsequently promote resolution and the re‐establishment of homoeostatic baseline. In this review, we summarize and put into the context the evolving hypotheses that are now expanding our understanding of the roles eosinophils likely have in the lung following allergen provocation.


Allergy | 2014

Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice.

Elizabeth A. Jacobsen; William E. LeSuer; Lian Willetts; Katie R. Zellner; Kirea Mazzolini; Nathalie Antonios; Brandon R. Beck; Cheryl A. Protheroe; Sergei I. Ochkur; Dana Colbert; Paige Lacy; Redwan Moqbel; Judith A. Appleton; Nancy A. Lee; James J. Lee

The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animal models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown.


Urologic Oncology-seminars and Original Investigations | 2014

Predicting response to bacillus Calmette-Guérin (BCG) in patients with carcinoma in situ of the bladder

Rafael Nunez-Nateras; Erik P. Castle; Cheryl A. Protheroe; Tolgay Ocal; Erin N. Ferrigni; Sergei I. Ochkur; Elizabeth A. Jacobsen; Yue Xian Hou; Paul E. Andrews; Thomas V. Colby; Nancy A. Lee; James J. Lee

PURPOSE Currently, there is no reliable tool to predict response to intravesical bacillus Calmette-Guérin (BCG). Based on the fact that BCG is a Th1-polarizing immunotherapy, we attempt to correlate the pretreatment immunologic tumor microenvironment (Th1 or Th2) with response to therapy. MATERIALS AND METHODS Bladder cancer patients with initial diagnosis of carcinoma in situ (Tis) were stratified based on their response to BCG treatment. A total of 38 patients met inclusion criteria (20 patients who responded and 18 patients who did not respond). Immunohistochemical (IHC) methods known to assess the type of immunologic microenvironment (Th1 vs. Th2) were performed on tumor tissue obtained at initial biopsy/resection: the level of tumor eosinophil infiltration and degranulation (Th2 response); the number of tumor-infiltrating GATA-3(+) (Th2-polarized) lymphocytes; and the number of tumor-infiltrating T-bet(+) (Th1-polarized) lymphocytes. Results obtained from these metrics were correlated with response to treatment with BCG immunotherapy. RESULTS The IHC metrics of the tumor immune microenvironment prior to BCG treatment were each statistically significant predictors of responders (R) vs. nonresponders (NR). Eosinophil infiltration and degranulation was higher for R vs. NR: 1.02 ± 0.17 vs. 0.5 ± 0.12 (P = 0.01) and 1.1 ± 0.15 vs. 0.56 ± 0.15 (P = 0.04), respectively. Ratio of GATA-3(+) (Th2-polarized) lymphocytes to T-bet(+) (Th1-polarized) lymphocytes was higher for R vs. NR: 4.85 ± 0.94 vs. 0.98 ± 0.19 (P<0.001). The 3 markers were combined to create a Th2 signature biomarker, which was a statistically significant (P<0.0001) predictor of R vs. NR. All IHC markers demonstrated that a preexisting Th1 immunologic environment within the tumor was predictive of BCG failure. CONCLUSION The Th1 vs. Th2 polarization of bladder tumor immune microenvironment prior to treatment with BCG represents a prognostic metric of response to therapy. If a patient has a preexisting Th1 immunologic response within the tumor, there is no value in using a therapy intended to create a Th1 immunologic response. An algorithm integrating 3 IHC methods provided a sensitive and specific technique that may become a useful tool for pathologists and urologists to predict response to BCG in patients with carcinoma in situ of the bladder.


Allergy | 2015

Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice

Elizabeth A. Jacobsen; Alfred D. Doyle; Dana Colbert; Katie R. Zellner; Cheryl A. Protheroe; William E. LeSuer; Nancy A. Lee; James J. Lee

Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL‐13 to allergic Th2 pulmonary disease remain to be defined.


American Journal of Respiratory and Critical Care Medicine | 2017

Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation

Elizabeth A. Jacobsen; Sergei I. Ochkur; Alfred D. Doyle; William E. LeSuer; Wen Li; Cheryl A. Protheroe; Dana Colbert; Katie R. Zellner; H.H. Shen; Charles G. Irvin; James J. Lee; Nancy A. Lee

Rationale: The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis. Objectives: To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation. Methods: A transgenic mouse model of chronic T‐helper cell type 2‐driven inflammation overexpressing IL‐5 from T cells and human eotaxin 2 in the lung (I5/hE2) was used to test the hypothesis that chronic histopathologies and the development of airway hyperresponsiveness occur as a consequence of extensive eosinophil degranulation in the lung parenchyma. Measurement and Main Results: Studies targeting specific inflammatory pathways in I5/hE2 mice surprisingly showed that eosinophil‐dependent immunoregulative events and not the release of individual secondary granule proteins are the central contributors to T‐helper cell type 2‐induced pulmonary remodeling and lung dysfunction. Specifically, our studies highlighted a significant role for eosinophil‐dependent IL‐13 expression. In contrast, extensive degranulation leading to the release of major basic protein‐1 or eosinophil peroxidase was not causatively linked to many of the induced pulmonary histopathologies. However, these studies did define a previously unappreciated link between the release of eosinophil peroxidase (but not major basic protein‐1) and observed levels of induced airway mucin. Conclusions: These data suggest that improvements observed in patients with asthma responding to therapeutic strategies ablating eosinophils may occur as a consequence of targeting immunoregulatory mechanisms and not by simply eliminating the destructive activities of these purportedly end‐stage effector cells.

Collaboration


Dive into the Elizabeth A. Jacobsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge