Sergei I. Ochkur
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergei I. Ochkur.
Journal of Experimental Medicine | 2008
Elizabeth A. Jacobsen; Sergei I. Ochkur; R.S. Pero; Anna G. Taranova; Cheryl A. Protheroe; Dana Colbert; Nancy A. Lee; James J. Lee
The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells.
Journal of Immunology | 2003
H.H. Shen; Sergei I. Ochkur; Michael P. McGarry; Jeffrey R. Crosby; Edie M. Hines; Michael T. Borchers; Huiying Wang; Travis L. Biechelle; K.R. O'Neill; Tracy Ansay; Dana Colbert; Stephania A. Cormier; J. Paul Justice; Nancy A. Lee; James J. Lee
Asthma and mouse models of allergic respiratory inflammation are invariably associated with a pulmonary eosinophilia; however, this association has remained correlative. In this report, a causative relationship between eosinophils and allergen-provoked pathologies was established using eosinophil adoptive transfer. Eosinophils were transferred directly into the lungs of either naive or OVA-treated IL-5−/− mice. This strategy resulted in a pulmonary eosinophilia equivalent to that observed in OVA-treated wild-type animals. A concomitant consequence of this eosinophil transfer was an increase in Th2 bronchoalveolar lavage cytokine levels and the restoration of intracellular epithelial mucus in OVA-treated IL-5−/− mice equivalent to OVA-treated wild-type levels. Moreover, the transfer also resulted in the development of airway hyperresponsiveness. These pulmonary changes did not occur when eosinophils were transferred into naive IL-5−/− mice, eliminating nonspecific consequences of the eosinophil transfer as a possible explanation. Significantly, administration of OVA-treated IL-5−/− mice with GK1.5 (anti-CD4) Abs abolished the increases in mucus accumulation and airway hyperresponsiveness following adoptive transfer of eosinophils. Thus, CD4+ T cell-mediated inflammatory signals as well as signals derived from eosinophils are each necessary, yet alone insufficient, for the development of allergic pulmonary pathology. These data support an expanded view of T cell and eosinophil activities and suggest that eosinophil effector functions impinge directly on lung function.
Clinical Gastroenterology and Hepatology | 2009
Cheryl A. Protheroe; Samantha A. Woodruff; Giovanni De Petris; Vince Mukkada; Sergei I. Ochkur; Sailajah Janarthanan; John C. Lewis; Shabana F. Pasha; Tisha N. Lunsford; Lucinda A. Harris; Virender K. Sharma; Michael P. McGarry; Nancy A. Lee; Glenn T. Furuta; James J. Lee
BACKGROUND & AIMS Eosinophilic esophagitis (EoE) is characterized by medically/surgically-resistant gastroesophageal reflux symptoms and dense squamous eosinophilia. Studies suggest that histologic assessment of esophageal eosinophilia alone cannot reliably separate patients with EoE from those with gastroesophageal reflux disease (GERD). Our goal was to develop an assay to identify EoE patients and perhaps differentiate EoE from other causes of esophageal eosinophilia. METHODS A monoclonal antibody specific for an eosinophil secondary granule protein (eosinophil peroxidase [EPX]) was developed and shown to specifically identify intact eosinophils and detect eosinophil degranulation in formalin-fixed specimens. A histopathologic scoring algorithm was developed to analyze data from patient evaluations; the utility of this algorithm was assessed by using archived esophageal tissues from patients with known diagnoses of EoE and GERD as well as controls from 2 tertiary care centers. RESULTS Intraobserver/interobserver blinded evaluations demonstrated a significant difference (P < .001) between scores of samples taken from control subjects, from patients with esophageal eosinophilia who had a diagnosis of EoE, and from patients with GERD (P < .001). This algorithm also was able to identify patients whose clinical course was suggestive of a diagnosis of EoE, but that nonetheless failed to reach the critical threshold number of > or =15 eosinophils in a high-power (40x) microscopy field. CONCLUSIONS A novel immunohistochemical scoring system was developed to address an unmet medical need to differentiate histologic specimens from patients with EoE relative to those with GERD. The availability of a unique anti-EPX-specific monoclonal antibody, combined with the ease/rapidity of this staining method and scoring system, will provide a valuable strategy for the assessment of esophageal eosinophilia.
Journal of Immunology | 2007
Sergei I. Ochkur; Elizabeth A. Jacobsen; Cheryl A. Protheroe; Travis L. Biechele; R.S. Pero; Michael P. McGarry; Huiying Wang; K.R. O'Neill; Dana Colbert; Thomas V. Colby; Huahao Shen; Michael R. Blackburn; Charles C. Irvin; James J. Lee; Nancy A. Lee
Mouse models of allergen provocation and/or transgenic gene expression have provided significant insights regarding the cellular, molecular, and immune responses linked to the pathologies occurring as a result of allergic respiratory inflammation. Nonetheless, the inability to replicate the eosinophil activities occurring in patients with asthma has limited their usefulness to understand the larger role(s) of eosinophils in disease pathologies. These limitations have led us to develop an allergen-naive double transgenic mouse model that expresses IL-5 systemically from mature T cells and eotaxin-2 locally from lung epithelial cells. We show that these mice develop several pulmonary pathologies representative of severe asthma, including structural remodeling events such as epithelial desquamation and mucus hypersecretion leading to airway obstruction, subepithelial fibrosis, airway smooth muscle hyperplasia, and pathophysiological changes exemplified by exacerbated methacholine-induced airway hyperresponsiveness. More importantly, and similar to human patients, the pulmonary pathologies observed are accompanied by extensive eosinophil degranulation. Genetic ablation of all eosinophils from this double transgenic model abolished the induced pulmonary pathologies, demonstrating that these pathologies are a consequence of one or more eosinophil effector functions.
Gut | 2013
Glenn T. Furuta; Amir F. Kagalwalla; James J. Lee; Preeth Alumkal; Brian Maybruck; Sophie Fillon; Joanne C. Masterson; Sergei I. Ochkur; Cheryl A. Protheroe; Wendy Moore; Zhaoxing Pan; Katie Amsden; Zachary D. Robinson; Kelley E. Capocelli; Vince Mukkada; Dan Atkins; David M. Fleischer; Lindsay Hosford; Mark A. Kwatia; Shauna Schroeder; Caleb J. Kelly; Mark A. Lovell; Hector Melin-Aldana; Steven J. Ackerman
Objective Eosinophil predominant inflammation characterises histological features of eosinophilic oesophagitis (EoE). Endoscopy with biopsy is currently the only method to assess oesophageal mucosal inflammation in EoE. We hypothesised that measurements of luminal eosinophil-derived proteins would correlate with oesophageal mucosal inflammation in children with EoE. Design The Enterotest diagnostic device was used to develop an oesophageal string test (EST) as a minimally invasive clinical device. EST samples and oesophageal mucosal biopsies were obtained from children undergoing upper endoscopy for clinically defined indications. Eosinophil-derived proteins including eosinophil secondary granule proteins (major basic protein-1, eosinophil-derived neurotoxin, eosinophil cationic protein, eosinophil peroxidase) and Charcot–Leyden crystal protein/galectin-10 were measured by ELISA in luminal effluents eluted from ESTs and extracts of mucosal biopsies. Results ESTs were performed in 41 children with active EoE (n=14), EoE in remission (n=8), gastro-oesophageal reflux disease (n=4) and controls with normal oesophagus (n=15). EST measurement of eosinophil-derived protein biomarkers significantly distinguished between children with active EoE, treated EoE in remission, gastro-oesophageal reflux disease and normal oesophagus. Levels of luminal eosinophil-derived proteins in EST samples significantly correlated with peak and mean oesophageal eosinophils/high power field (HPF), eosinophil peroxidase indices and levels of the same eosinophil-derived proteins in extracts of oesophageal biopsies. Conclusions The presence of eosinophil-derived proteins in luminal secretions is reflective of mucosal inflammation in children with EoE. The EST is a novel, minimally invasive device for measuring oesophageal eosinophilic inflammation in children with EoE.
Journal of Leukocyte Biology | 2006
Stephania A. Cormier; Anna G. Taranova; Carrie E. Bedient; Thanh Nguyen; Cheryl A. Protheroe; R.S. Pero; Dawn Dimina; Sergei I. Ochkur; K.R. O'Neill; Dana Colbert; Theresa R. Lombari; Stephanie L. Constant; Michael P. McGarry; James J. Lee; Nancy A. Lee
Tumor‐associated eosinophilia has been observed in numerous human cancers and several tumor models in animals; however, the details surrounding this eosinophilia remain largely undefined and anecdotal. We used a B16‐F10 melanoma cell injection model to demonstrate that eosinophil infiltration of tumors occurred from the earliest palpable stages with significant accumulations only in the necrotic and capsule regions. Furthermore, the presence of diffuse extracellular matrix staining for eosinophil major basic protein was restricted to the necrotic areas of tumors, indicating that eosinophil degranulation was limited to this region. Antibody‐mediated depletion of CD4+ T cells and adoptive transfer of eosinophils suggested, respectively, that the accumulation of eosinophils is not associated with T helper cell type 2‐dependent immune responses and that recruitment is a dynamic, ongoing process, occurring throughout tumor growth. Ex vivo migration studies have identified what appears to be a novel chemotactic factor(s) released by stressed/dying melanoma cells, suggesting that the accumulation of eosinophils in tumors occurs, in part, through a unique mechanism dependent on a signal(s) released from areas of necrosis. Collectively, these studies demonstrate that the infiltration of tumors by eosinophils is an early and persistent response that is spatial‐restricted. It is more important that these data also show that the mechanism(s) that elicit this host response occur, independent of immune surveillance, suggesting that eosinophils are part of an early inflammatory reaction at the site of tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2007
R.S. Pero; Michael T. Borchers; Karsten Spicher; Sergei I. Ochkur; Lyudmila Sikora; Savita P. Rao; Hiam Abdala-Valencia; K.R. O'Neill; Huahao Shen; Michael P. McGarry; Nancy A. Lee; Joan M. Cook-Mills; P. Sriramarao; Melvin I. Simon; Lutz Birnbaumer; James J. Lee
The trafficking of leukocytes from the blood to sites of inflammation is the cumulative result of receptor-ligand-mediated signaling events associated with the leukocytes themselves as well as with the underlying vascular endothelium. Our data show that Gαi signaling pathways in the vascular endothelium regulate a critical step required for leukocyte diapedesis. In vivo studies using knockout mice demonstrated that a signaling event in a non-lymphohematopoietic compartment of the lung prevented the recruitment of proinflammatory leukocytes. Intravital microscopy showed that blockade was at the capillary endothelial surface andex vivo studies of leukocyte trafficking demonstrated that a Gαi-signaling event in endothelial cells was required for transmigration. Collectively, these data suggest that specific Gαi2-mediated signaling between endothelial cells and leukocytes is required for the extravasation of leukocytes and for tissue-specific accumulation.
Blood | 2013
Alfred D. Doyle; Elizabeth A. Jacobsen; Sergei I. Ochkur; Michael P. McGarry; Kevin Shim; David T. C. Nguyen; Cheryl A. Protheroe; Dana Colbert; Jake Kloeber; Joseph Neely; Kelly P. Shim; Kimberly D. Dyer; Helene F. Rosenberg; James J. Lee; Nancy A. Lee
Eosinophil activities are often linked with allergic diseases such as asthma and the pathologies accompanying helminth infection. These activities have been hypothesized to be mediated, in part, by the release of cationic proteins stored in the secondary granules of these granulocytes. The majority of the proteins stored in these secondary granules (by mass) are major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX). Unpredictably, a knockout approach targeting the genes encoding these proteins demonstrated that, unlike in mice containing a single deficiency of only MBP-1 or EPX, the absence of both granule proteins resulted in the near complete loss of peripheral blood eosinophils with no apparent impact on any other hematopoietic lineage. Moreover, the absence of MBP-1 and EPX promoted a concomitant loss of eosinophil lineage-committed progenitors in the marrow, identifying a specific blockade in eosinophilopoiesis as the causative event. Significantly, this blockade of eosinophilopoiesis is also observed in ex vivo cultures of marrow progenitors and is not rescued in vivo by adoptive bone marrow engraftment, suggesting a cell-autonomous defect in marrow progenitors. These observations implicate a role for granule protein gene expression as a regulator of eosinophilopoiesis and provide another strain of mice congenitally deficient of eosinophils.
Journal of Leukocyte Biology | 2013
Alfred D. Doyle; Elizabeth A. Jacobsen; Sergei I. Ochkur; Lian Willetts; Kelly P. Shim; Joseph Neely; Jake Kloeber; Will LeSuer; R.S. Pero; Paige Lacy; Redwan Moqbel; Nancy A. Lee; James J. Lee
Eosinophils are generally linked to innate host defense against helminths, as well as the pathologies associated with allergic diseases, such as asthma. Nonetheless, the activities of eosinophils remain poorly understood, which in turn, has prevented detailed definitions of their role(s) in health and disease. Homologous recombination in embryonic stem cells was used to insert a mammalianized Cre recombinase in the ORF encoding Epx. This knock‐in strategy overcame previous inefficiencies associated with eosinophil‐specific transgenic approaches and led to the development of a knock‐in strain of mice (eoCRE), capable of mediating recombination of “floxed” reporter cassettes in >95% of peripheral blood eosinophils. We also showed that this Cre expression was limited exclusively to eosinophil‐lineage committed cells with no evidence of Cre‐mediated toxicity. The efficiency and specificity of Cre expression in eoCRE mice were demonstrated further in a cross with a knock‐in mouse containing a “(flox‐stop‐flox)” DTA cassette at the ROSA26 locus, generating yet another novel, eosinophil‐less strain of mice. The development of eoCRE mice represents a milestone in studies of eosinophil biology, permitting eosinophil‐specific gene targeting and overexpression in the mouse as part of next‐generation studies attempting to define eosinophil effector functions.
Journal of Immunological Methods | 2012
Sergei I. Ochkur; John Dongil Kim; Cheryl A. Protheroe; Dana Colbert; Redwan Moqbel; Paige Lacy; James J. Lee; Nancy A. Lee
Mouse models of eosinophilic disorders are often part of preclinical studies investigating the underlying biological mechanisms of disease pathology. The presence of extracellular eosinophil granule proteins in affected tissues is a well established and specific marker of eosinophil activation in both patients and mouse models of human disease. Unfortunately, assessments of granule proteins in the mouse have been limited by the availability of specific antibodies and a reliance on assays of released enzymatic activities that are often neither sensitive nor eosinophil specific. The ability to detect immunologically and quantify the presence of a mouse eosinophil granule protein in biological fluids and/or tissue extracts was achieved by the generation of monoclonal antibodies specific for eosinophil peroxidase (EPX). This strategy identified unique pairs of antibodies with high avidity to the target protein and led to the development of a unique sandwich ELISA for the detection of EPX. Full factorial design was used to develop this ELISA, generating an assay that is eosinophil-specific and nearly 10 times more sensitive than traditional OPD-based detection methods of peroxidase activity. The added sensitivity afforded by this novel assay was used to detect and quantify eosinophil degranulation in several settings, including bronchoalveolar fluid from OVA sensitized/challenged mice (an animal model of asthma), serum samples derived from peripheral blood recovered from the tail vasculature, and from purified mouse eosinophils stimulated ex vivo with platelet activating factor (PAF) and PAF + ionomycin. This ability to assess mouse eosinophil degranulation represents a specific, sensitive, and reproducible assay that fulfills a critical need in studies of eosinophil-associated pathologies in mice.