Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Jonas is active.

Publication


Featured researches published by Elizabeth A. Jonas.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Modulation of mitochondrial function by endogenous Zn2+ pools

Stefano L. Sensi; Dien Ton-That; Patrick G. Sullivan; Elizabeth A. Jonas; Kyle R. Gee; Leonard K. Kaczmarek; John H. Weiss

Recent evidence suggests that intracellular Zn2+ accumulation contributes to the neuronal injury that occurs in epilepsy or ischemia in certain brain regions, including hippocampus, amygdala, and cortex. Although most attention has been given to the vesicular Zn2+ that is released into the synaptic space and may gain entry to postsynaptic neurons, recent studies have highlighted pools of intracellular Zn2+ that are mobilized in response to stimulation. One such Zn2+ pool is likely bound to cytosolic proteins, like metallothioneins. Applying imaging techniques to cultured cortical neurons, this study provides novel evidence for the presence of a mitochondrial pool distinct from the cytosolic protein or ligand-bound pool. These pools can be pharmacologically mobilized largely independently of each other, with Zn2+ release from one resulting in apparent net Zn2+ transfer to the other. Further studies found evidence for complex and potent effects of Zn2+ on isolated brain mitochondria. Submicromolar levels, comparable to those that might occur on strong mobilization of intracellular compartments, induced membrane depolarization (loss of Δψm), increases in currents across the mitochondrial inner membrane as detected by direct patch clamp recording of mitoplasts, increased O2 consumption and decreased reactive oxygen species (ROS) generation, whereas higher levels decreased O2 consumption and increased ROS generation. Finally, strong mobilization of protein-bound Zn2+ appeared to induce partial loss of Δψm, suggesting that movement of Zn2+ between cytosolic and mitochondrial pools might be of functional significance in intact neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2014

An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore

Kambiz N. Alavian; Gisela Beutner; Emma Lazrove; Silvio Sacchetti; Han-A Park; Pawel Licznerski; Hongmei Li; Panah Nabili; Kathryn Hockensmith; Morven Graham; George A. Porter; Elizabeth A. Jonas

Significance Stressful cellular events cause intracellular Ca2+ dysregulation, rapid loss of inner mitochondrial membrane potential [the permeability transition (PT)], metabolic dysfunction, and death. Rapid Ca2+-induced uncoupling is one of the most important regulators of cell demise. We show that the c-subunit ring of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to PT and cell death. In contrast, c-subunit channel closure promotes cell survival and increased efficiency of cellular metabolism. The c-subunit channel is therefore strategically located at the center of the energy-producing complex of the cell to regulate metabolic efficiency and orchestrate the rapid onset of death and thus is a candidate for the mitochondrial PT pore. Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca2+) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the FO of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca2+ enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F1, providing a mechanism for mPTP opening. In contrast, recombinant F1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca2+-induced IMM depolarization and inhibits Ca2+ and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.


Current Opinion in Neurobiology | 1996

Regulation of potassium channels by protein kinases

Elizabeth A. Jonas; Leonard K. Kaczmarek

Studies of the role of protein phosphorylation in the modulation of neuronal excitability are beginning to identify specific sites on ion channels that are substrates for serine/threonine kinases and that contribute to short-term and long-term regulation of current amplitude and kinetics. In addition, it is becoming apparent that phosphorylation of tyrosine residues may produce acute changes in the characteristics of ion channels. These recent findings are best illustrated by examining the Shaker superfamily of potassium channels.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons

Hongmei Li; Yingbei Chen; Adrienne Jones; Richard H. Sanger; Leon P. Collis; Richard J. Flannery; Ewan C. McNay; Tingxi Yu; Robert Schwarzenbacher; Blaise Bossy; Ella Bossy-Wetzel; Marc Pypaert; John Hickman; Peter J. Smith; J. Marie Hardwick; Elizabeth A. Jonas

Maturation of neuronal synapses is thought to involve mitochondria. Bcl-xL protein inhibits mitochondria-mediated apoptosis but may have other functions in healthy adult neurons in which Bcl-xL is abundant. Here, we report that overexpression of Bcl-xL postsynaptically increases frequency and amplitude of spontaneous miniature synaptic currents in rat hippocampal neurons in culture. Bcl-xL, overexpressed either pre or postsynaptically, increases synapse number, the number and size of synaptic vesicle clusters, and mitochondrial localization to vesicle clusters and synapses, likely accounting for the changes in miniature synaptic currents. Conversely, knockdown of Bcl-xL or inhibiting it with ABT-737 decreases these morphological parameters. The mitochondrial fission protein, dynamin-related protein 1 (Drp1), is a GTPase known to localize to synapses and affect synaptic function and structure. The effects of Bcl-xL appear mediated through Drp1 because overexpression of Drp1 increases synaptic markers, and overexpression of the dominant-negative dnDrp1-K38A decreases them. Furthermore, Bcl-xL coimmunoprecipitates with Drp1 in tissue lysates, and in a recombinant system, Bcl-xL protein stimulates GTPase activity of Drp1. These findings suggest that Bcl-xL positively regulates Drp1 to alter mitochondrial function in a manner that stimulates synapse formation.


Journal of Cell Biology | 2009

Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons

Sarah B. Berman; Ying Bei Chen; Bing Qi; J. Michael McCaffery; Edmund B. Rucker; Sandra Goebbels; Klaus-Armin Nave; Beth Arnold; Elizabeth A. Jonas; Fernando J. Pineda; J. Marie Hardwick

Mitochondrial fission and fusion are linked to synaptic activity in healthy neurons and are implicated in the regulation of apoptotic cell death in many cell types. We developed fluorescence microscopy and computational strategies to directly measure mitochondrial fission and fusion frequencies and their effects on mitochondrial morphology in cultured neurons. We found that the rate of fission exceeds the rate of fusion in healthy neuronal processes, and, therefore, the fission/fusion ratio alone is insufficient to explain mitochondrial morphology at steady state. This imbalance between fission and fusion is compensated by growth of mitochondrial organelles. Bcl-xL increases the rates of both fusion and fission, but more important for explaining the longer organelle morphology induced by Bcl-xL is its ability to increase mitochondrial biomass. Deficits in these Bcl-xL–dependent mechanisms may be critical in neuronal dysfunction during the earliest phases of neurodegeneration, long before commitment to cell death.


Journal of Cell Biology | 2011

Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential

Ying Bei Chen; Miguel A. Aon; Yi-Te Hsu; Lucian Soane; Xinchen Teng; J. Michael McCaffery; Wen Chih Cheng; Bing Qi; Hongmei Li; Kambiz N. Alavian; Margaret Dayhoff-Brannigan; Shifa Zou; Fernando J. Pineda; Brian O'Rourke; Young Hee Ko; Peter L. Pedersen; Leonard K. Kaczmarek; Elizabeth A. Jonas; J. Marie Hardwick

To promote cell survival, the antiapoptotic factor Bcl-xL both inhibits Bax-induced mitochondrial outer membrane permeabilization and stabilizes mitochondrial inner membrane ion flux and thus overall mitochondrial energetic capacity.


Journal of Immunology | 2007

Expression of the Voltage-Gated Sodium Channel NaV1.5 in the Macrophage Late Endosome Regulates Endosomal Acidification

Michael D. Carrithers; Sulayman D. Dib-Hajj; Lisette M. Carrithers; Gouzel Tokmoulina; Marc Pypaert; Elizabeth A. Jonas; Stephen G. Waxman

Voltage-gated sodium channels expressed on the plasma membrane activate rapidly in response to changes in membrane potential in cells with excitable membranes such as muscle and neurons. Macrophages also require rapid signaling mechanisms as the first line of defense against invasion by microorganisms. In this study, our goal was to examine the role of intracellular voltage-gated sodium channels in macrophage function. We demonstrate that the cardiac voltage-gated sodium channel, NaV1.5, is expressed on the late endosome, but not the plasma membrane, in a human monocytic cell line, THP-1, and primary human monocyte-derived macrophages. Although the neuronal channel, NaV1.6, is also expressed intracellularly, it has a distinct subcellular localization. In primed cells, NaV1.5 regulates phagocytosis and endosomal pH during LPS-mediated endosomal acidification. Activation of the endosomal channel causes sodium efflux and decreased intraendosomal pH. These results demonstrate a functionally relevant intracellular voltage-gated sodium channel and reveal a novel mechanism to regulate macrophage endosomal acidification.


The Journal of Neuroscience | 2003

Modulation of Synaptic Transmission by the BCL-2 Family Protein BCL-xL

Elizabeth A. Jonas; Daniel Hoit; John Hickman; Teresa A. Brandt; Brian M. Polster; Yihru Fannjiang; Erin McCarthy; Marlena K. Montanez; J. Marie Hardwick; Leonard K. Kaczmarek

BCL-2 family proteins are known to regulate cell death during development by influencing the permeability of mitochondrial membranes. The anti-apoptotic BCL-2 family protein BCL-xL is highly expressed in the adult brain and localizes to mitochondria in the presynaptic terminal of the adult squid stellate ganglion. Application of recombinant BCL-xL through a patch pipette to mitochondria inside the giant presynaptic terminal triggered multiconductance channel activity in mitochondrial membranes. Furthermore, injection of full-length BCL-xL protein into the presynaptic terminal enhanced postsynaptic responses and enhanced the rate of recovery from synaptic depression, whereas a recombinant pro-apoptotic cleavage product of BCL-xL attenuated postsynaptic responses. The effect of BCL-xL on synaptic responses persisted in the presence of a blocker of mitochondrial calcium uptake and was mimicked by injection of ATP into the terminal. These studies indicate that the permeability of outer mitochondrial membranes influences synaptic transmission, and they raise the possibility that modulation of mitochondrial conductance by BCL-2 family proteins affects synaptic stability.


Developmental Cell | 2003

BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development.

Yihru Fannjiang; Chong Hyun Kim; Richard L. Huganir; Shifa Zou; Tullia Lindsten; Craig B. Thompson; Toshiaki Mito; Richard J. Traystman; Thomas Larsen; Diane E. Griffin; Allen S. Mandir; Ted M. Dawson; Sonny Dike; Andrea L. Sappington; Douglas A. Kerr; Elizabeth A. Jonas; Leonard K. Kaczmarek; J. Marie Hardwick

BAK is a pro-apoptotic BCL-2 family protein that localizes to mitochondria. Here we evaluate the function of BAK in several mouse models of neuronal injury including neuronotropic Sindbis virus infection, Parkinsons disease, ischemia/stroke, and seizure. BAK promotes or inhibits neuronal death depending on the specific death stimulus, neuron subtype, and stage of postnatal development. BAK protects neurons from excitotoxicity and virus infection in the hippocampus. As mice mature, BAK is converted from anti- to pro-death function in virus-infected spinal cord neurons. In addition to regulating cell death, BAK also protects mice from kainate-induced seizures, suggesting a possible role in regulating synaptic activity. BAK can alter neurotransmitter release in a direction consistent with its protective effects on neurons and mice. These findings suggest that BAK inhibits cell death by modifying neuronal excitability.


The Journal of Neuroscience | 2006

Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

Laura Bonanni; Mushtaque Chachar; Teresa Jover-Mengual; Hongmei Li; Adrienne Jones; Hidenori Yokota; Dimitry Ofengeim; Richard J. Flannery; Takahiro Miyawaki; Chang Hoon Cho; Brian M. Polster; Marc Pypaert; J. Marie Hardwick; Stefano L. Sensi; R. Suzanne Zukin; Elizabeth A. Jonas

Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

Collaboration


Dive into the Elizabeth A. Jonas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Bonanni

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Smith

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge