Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han-A Park is active.

Publication


Featured researches published by Han-A Park.


Proceedings of the National Academy of Sciences of the United States of America | 2014

An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore

Kambiz N. Alavian; Gisela Beutner; Emma Lazrove; Silvio Sacchetti; Han-A Park; Pawel Licznerski; Hongmei Li; Panah Nabili; Kathryn Hockensmith; Morven Graham; George A. Porter; Elizabeth A. Jonas

Significance Stressful cellular events cause intracellular Ca2+ dysregulation, rapid loss of inner mitochondrial membrane potential [the permeability transition (PT)], metabolic dysfunction, and death. Rapid Ca2+-induced uncoupling is one of the most important regulators of cell demise. We show that the c-subunit ring of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to PT and cell death. In contrast, c-subunit channel closure promotes cell survival and increased efficiency of cellular metabolism. The c-subunit channel is therefore strategically located at the center of the energy-producing complex of the cell to regulate metabolic efficiency and orchestrate the rapid onset of death and thus is a candidate for the mitochondrial PT pore. Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca2+) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the FO of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca2+ enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F1, providing a mechanism for mPTP opening. In contrast, recombinant F1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca2+-induced IMM depolarization and inhibits Ca2+ and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.


Cell Death & Differentiation | 2017

Inhibition of Bcl-xL prevents pro-death actions of |[Delta]|N-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity

Han-A Park; Pawel Licznerski; Nelli Mnatsakanyan; Yulong Niu; Silvio Sacchetti; Jing Wu; Brian M. Polster; Kambiz N. Alavian; Elizabeth A. Jonas

ABT-737 is a pharmacological inhibitor of the anti-apoptotic activity of B-cell lymphoma-extra large (Bcl-xL) protein; it promotes apoptosis of cancer cells by occupying the BH3-binding pocket. We have shown previously that ABT-737 lowers cell metabolic efficiency by inhibiting ATP synthase activity. However, we also found that ABT-737 protects rodent brain from ischemic injury in vivo by inhibiting formation of the pro-apoptotic, cleaved form of Bcl-xL, ΔN-Bcl-xL. We now report that a high concentration of ABT-737 (1 μM), or a more selective Bcl-xL inhibitor WEHI-539 (5 μM) enhances glutamate-induced neurotoxicity while a low concentration of ABT-737 (10 nM) or WEHI-539 (10 nM) is neuroprotective. High ABT-737 markedly increased ΔN-Bcl-xL formation, aggravated glutamate-induced death and resulted in the loss of mitochondrial membrane potential and decline in ATP production. Although the usual cause of death by ABT-737 is thought to be related to activation of Bax at the outer mitochondrial membrane due to sequestration of Bcl-xL, we now find that low ABT-737 not only prevents Bax activation, but it also inhibits the decline in mitochondrial potential produced by glutamate toxicity or by direct application of ΔN-Bcl-xL to mitochondria. Loss of mitochondrial inner membrane potential is also prevented by cyclosporine A, implicating the mitochondrial permeability transition pore in death aggravated by ΔN-Bcl-xL. In keeping with this, we find that glutamate/ΔN-Bcl-xL-induced neuronal death is attenuated by depletion of the ATP synthase c-subunit. C-subunit depletion prevented depolarization of mitochondrial membranes in ΔN-Bcl-xL expressing cells and substantially prevented the morphological change in neurites associated with glutamate/ΔN-Bcl-xL insult. Our findings suggest that low ABT-737 or WEHI-539 promotes survival during glutamate toxicity by preventing the effect of ΔN-Bcl-xL on mitochondrial inner membrane depolarization, highlighting ΔN-Bcl-xL as an important therapeutic target in injured brain.


Archive | 2017

Mitochondrial Regulators of Synaptic Plasticity in the Ischemic Brain

Han-A Park; Elizabeth A. Jonas

Synaptic plasticity is a process by which neurons adapt or alter the strength of information transfer, and it is known to play a role in memory formation, learning, and recovery after injury. In this chapter, we describe how ischemic insults alter neuronal intracellular mechanisms and signaling pathways, and we discuss how, after neuronal injury, synaptic plasticity is regulated prior to and during death or rehabilitation and recovery. In addition, recently described regulators of synaptic plasticity will be introduced.


Neural Regeneration Research | 2017

ΔN-Bcl-xL, a therapeutic target for neuroprotection

Han-A Park; Elizabeth A. Jonas

The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produces a fragmented form, ΔN-Bcl-xL. Accumulation of ΔN-Bcl-xL is associated with mitochondrial dysfunction and neuronal death. Therefore, strategies to inhibit the activity or formation of ΔN-Bcl-xL protect the brain against excitotoxic injuries. Our team found that the pharmacological inhibitor ABT-737 exerts dose dependent effects in primary neurons. When primary hippocampal neurons were treated with 1 μM ABT-737, glutamate-mediated mitochondrial damage and neuronal death were exacerbated, whereas 10 nM ABT-737, a 100-fold lower concentration, protected mitochondrial function and enhanced neuronal viability against glutamate toxicity. In addition, we suggested acute vs. prolonged formation of ΔN-Bcl-xL may have different effects on mitochondrial or neuronal functions. Unlike acute production of ΔN-Bcl-xL by glutamate, overexpression of ΔN-Bcl-xL did not cause drastic changes in neuronal viability. We predicted that neurons undergo adaptation and may activate altered metabolism to compensate for ΔN-Bcl-xL-mediated mitochondrial dysfunction. Although the detailed mechanism of ABT-mediated neurotoxicity neuroprotection is still unclear, our study shows that the mitochondrial membrane protein ΔN-Bcl-xL is a central target for interventions.


Neural Regeneration Research | 2014

Mitochondrial membrane protein Bcl-xL, a regulator of adult neuronal growth and synaptic plasticity: multiple functions beyond apoptosis.

Han-A Park; Elizabeth A. Jonas

The B-cell lymphoma 2 (Bcl2) family of proteins participates in cell death or survival through a mitochondrial pathway. The pro-apoptotic members of the Bcl2 family such as Bim, Bid, Bax and Bak trigger cell death by contributing to the enhancement of mitochondrial outer membrane permeability to pro-apoptotic factors such as cytochrome c, with the subsequent activation of caspases. The anti-apoptotic members, such as B-cell lymphoma-extra large (Bcl-xL), block the pro-apoptotic Bcl2 members and prevent cell death. Bcl-xL is abundantly expressed during development and in mature neurons, suggesting that it plays a role in protection from death from untoward events occurring in adult life such as ischemia, inflammation or trauma. When these neurotoxic insults occur, Bcl-xL translocates to mitochondria and prevents activation and homo-oligomerization of pro-apoptotic family members such Bax and Bak. Numerous studies have shown pro-survival roles for Bcl-xL in adult neurons using various models; nevertheless, the role of Bcl-xL outside of the field of neuronal death, i.e., in adult neuronal growth, excitability or synaptic plasticity, has not been studied in depth.


Biophysical Journal | 2018

Molecular Composition, Structure and Regulation of the Mitochondrial Permeability Transition Pore

Nelli Mnatsakanyan; Han-A Park; Jing Wu; Paige Miranda; Elizabeth A. Jonas


Biophysical Journal | 2017

New Insights into the Molecular Structure and Regulation of the Mitochondrial Permeability Transition Pore

Nelli Mnatsakanyan; Han-A Park; Jing Wu; Paige Miranda; Elizabeth A. Jonas


Biophysical Journal | 2017

Mitochondria and Memory: Bioenergetics, Synaptic Plasticity and Neurodegeneration

Elizabeth A. Jonas; Nelli Mnatsakanyan; Paige Miranda; Han-A Park; Rongmin Chen; Pawel Licznerski; Maria Weinert; Peter J. Smith; Andrés E. Chávez; R. Suzanne Zukin; Valentin K. Gribkoff; Kambiz N. Alavian


Biophysical Journal | 2016

A Novel Ion Channel in ATP Synthase C-Subunit Ring: Gatekeeper of Life and Death

Nelli Mnatsakanyan; Han-A Park; Jing Wu; Paige Miranda; Elizabeth A. Jonas


Biochimica et Biophysica Acta | 2016

PTP and LTP: The physiological role of the permeability transition pore in learning and memory

Elizabeth A. Jonas; Paige Miranda; Valentin K. Gribkoff; Kambiz N. Alavian; Han-A Park; Jing Wu; Andrés E. Chávez; R. Suzanne Zukin; J. Marie Hardwick; Nelli Mnatsakanyan

Collaboration


Dive into the Han-A Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés E. Chávez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George A. Porter

University of Rochester Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge