Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Savory is active.

Publication


Featured researches published by Elizabeth A. Savory.


Plant Physiology | 2011

Arabidopsis NDR1 Is an Integrin-Like Protein with a Role in Fluid Loss and Plasma Membrane-Cell Wall Adhesion

Caleb Knepper; Elizabeth A. Savory; Brad Day

Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with Pseudomonas syringae pv tomato DC3000 expressing the bacterial effector proteins AvrRpt2, AvrB, and AvrPphB activates resistance by the aforementioned R proteins. Whereas the genetic requirement for NDR1 in plant disease resistance signaling has been detailed, our study focuses on determining a global, physiological role for NDR1. Through the use of homology modeling and structure threading, NDR1 was predicted to have a high degree of structural similarity to Arabidopsis LATE EMBRYOGENESIS ABUNDANT14, a protein implicated in abiotic stress responses. Specific protein motifs also point to a degree of homology with mammalian integrins, well-characterized proteins involved in adhesion and signaling. This structural homology led us to examine a physiological role for NDR1 in preventing fluid loss and maintaining cell integrity through plasma membrane-cell wall adhesions. Our results show a substantial alteration in induced (i.e. pathogen-inoculated) electrolyte leakage and a compromised pathogen-associated molecular pattern-triggered immune response in ndr1-1 mutant plants. As an extension of these analyses, using a combination of genetic and cell biology-based approaches, we have identified a role for NDR1 in mediating plasma membrane-cell wall adhesions. Taken together, our data point to a broad role for NDR1 both in mediating primary cellular functions in Arabidopsis through maintaining the integrity of the cell wall-plasma membrane connection and as a key signaling component of these responses during pathogen infection.


Molecular Plant Pathology | 2011

The cucurbit downy mildew pathogen Pseudoperonospora cubensis.

Elizabeth A. Savory; L. L. Granke; L. M. Quesada-Ocampo; Marina Varbanova; M. K. Hausbeck; Brad Day

UNLABELLED Pseudoperonospora cubensis[(Berkeley & M. A. Curtis) Rostovzev], the causal agent of cucurbit downy mildew, is responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash. Although downy mildew has been a major issue in Europe since the mid-1980s, in the USA, downy mildew on cucumber has been successfully controlled for many years through host resistance. However, since the 2004 growing season, host resistance has been effective no longer and, as a result, the control of downy mildew on cucurbits now requires an intensive fungicide programme. Chemical control is not always feasible because of the high costs associated with fungicides and their application. Moreover, the presence of pathogen populations resistant to commonly used fungicides limits the long-term viability of chemical control. This review summarizes the current knowledge of taxonomy, disease development, virulence, pathogenicity and control of Ps. cubensis. In addition, topics for future research that aim to develop both short- and long-term control measures of cucurbit downy mildew are discussed. TAXONOMY Kingdom Straminipila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Pseudoperonospora; Species Pseudoperonospora cubensis. DISEASE SYMPTOMS Angular chlorotic lesions bound by leaf veins on the foliage of cucumber. Symptoms vary on different cucurbit species and varieties, specifically in terms of lesion development, shape and size. Infection of cucurbits by Ps. cubensis impacts fruit yield and overall plant health. INFECTION PROCESS Sporulation on the underside of leaves results in the production of sporangia that are dispersed by wind. On arrival on a susceptible host, sporangia germinate in free water on the leaf surface, producing biflagellate zoospores that swim to and encyst on stomata, where they form germ tubes. An appressorium is produced and forms a penetration hypha, which enters the leaf tissue through the stomata. Hyphae grow through the mesophyll and establish haustoria, specialized structures for the transfer of nutrients and signals between host and pathogen. CONTROL Management of downy mildew in Europe requires the use of tolerant cucurbit cultivars in conjunction with fungicide applications. In the USA, an aggressive fungicide programme, with sprays every 5-7 days for cucumber and every 7-10 days for other cucurbits, has been necessary to control outbreaks and to prevent crop loss. USEFUL WEBSITES http://www.daylab.plp.msu.edu/pseudoperonospora-cubensis/ (Day Laboratory website with research advances in downy mildew); http://veggies.msu.edu/ (Hausbeck Laboratory website with downy mildew news for growers); http://cdm.ipmpipe.org/ (Cucurbit downy mildew forecasting homepage); http://ipm.msu.edu/downymildew.htm (Downy mildew information for Michigans vegetable growers).


Molecular Plant-microbe Interactions | 2011

454 Genome Sequencing of Pseudoperonospora cubensis Reveals Effector Proteins with a QXLR Translocation Motif

Miaoying Tian; Joe Win; Elizabeth A. Savory; Alyssa Burkhardt; Michael A. Held; Federica Brandizzi; Brad Day

Pseudoperonospora cubensis is a biotrophic oomycete pathogen that causes downy mildew of cucurbits, a devastating foliar disease threatening cucurbit production worldwide. We sequenced P. cubensis genomic DNA using 454 pyrosequencing and obtained random genomic sequences covering approximately 14% of the genome, thus providing the first set of useful genomic sequence information for P. cubensis. Using bioinformatics approaches, we identified 32 putative RXLR effector proteins. Interestingly, we also identified 29 secreted peptides with high similarity to RXLR effectors at the N-terminal translocation domain, yet containing an R-to-Q substitution in the first residue of the translocation motif. Among these, a family of QXLR-containing proteins, designated as PcQNE, was confirmed to have a functional signal peptide and was further characterized as being localized in the plant nucleus. Internalization of secreted PcQNE into plant cells requires the QXLR-EER motif. This family has a large number of near-identical copies within the P. cubensis genome, is under diversifying selection at the C-terminal domain, and is upregulated during infection of plants, all of which are common characteristics of characterized oomycete effectors. Taken together, the data suggest that PcQNE are bona fide effector proteins with a QXLR translocation motif, and QXLR effectors are prevalent in P. cubensis. Furthermore, the massive duplication of PcQNE suggests that they might play pivotal roles in pathogen fitness and pathogenicity.


PLOS ONE | 2012

mRNA-Seq Analysis of the Pseudoperonospora cubensis Transcriptome During Cucumber (Cucumis sativus L.) Infection

Elizabeth A. Savory; Bishwo N. Adhikari; John P. Hamilton; Brieanne Vaillancourt; C. Robin Buell; Brad Day

Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host.


PLOS ONE | 2012

Alternative Splicing of a Multi-Drug Transporter from Pseudoperonospora cubensis Generates an RXLR Effector Protein That Elicits a Rapid Cell Death

Elizabeth A. Savory; Cheng Zou; Bishwo N. Adhikari; John P. Hamilton; C. Robin Buell; Shin Han Shiu; Brad Day

Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.


New Phytologist | 2013

Gene-for-gene relationship in the host–pathogen system Malus × robusta 5–Erwinia amylovora

Isabelle Vogt; Thomas Wöhner; Klaus Richter; Henryk Flachowsky; George W. Sundin; Annette Wensing; Elizabeth A. Savory; Klaus Geider; Brad Day; Magda Viola Hanke; Andreas Peil

Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora.


IMA Fungus : The Global Mycological Journal | 2011

The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora.

Fabian Runge; Sabine Telle; Sebastian Ploch; Elizabeth A. Savory; Brad Day; Rahul Sharma; Marco Thines

Pathogens belonging to the Oomycota, a group of heterokont, fungal-like organisms, are amongst the most notorious pathogens in agriculture. In particular, the obligate biotrophic downy mildews and the hemibiotrophic members of the genus Phytophthora are responsible for a huge variety of destructive diseases, including sudden oak death caused by P. ramorum, potato late blight caused by P. infestans, cucurbit downy mildew caused by Pseudoperonospora cubensis, and grape downy mildew caused by Plasmopara viticola. About 800 species of downy mildews and roughly 100 species of Phytophthora are currently accepted, and recent studies have revealed that these groups are closely related. However, the degree to which Phytophthora is paraphyletic and where exactly the downy mildews insert into this genus in relation to other clades could not be inferred with certainty to date. Here we present a molecular phylogeny encompassing all clades of Phytophthora as represented in a multi-locus dataset and two representatives of the monophyletic downy mildews from divergent genera. Our results demonstrate that Phytophthora is at least six times paraphyletic with respect to the downy mildews. The downy mildew representatives are consistently nested within clade 4 (contains Phytophthora palmivora), which is placed sister to clade 1 (contains Phytophthora infestans). This finding would either necessitate placing all downy mildews and Phytopthora species in a single genus, either under the oldest generic name Peronospora or by conservation the later name Phytophthora, or the description of at least six new genera within Phytophthora. The complications of both options are discussed, and it is concluded that the latter is preferable, as it warrants fewer name changes and is more practical.


PLOS ONE | 2012

Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis.

Bishwo N. Adhikari; Elizabeth A. Savory; Brieanne Vaillancourt; Kevin L. Childs; John P. Hamilton; Brad Day; C. Robin Buell

The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.


Plant Signaling & Behavior | 2011

The role of NDR1 in pathogen perception and plant defense signaling

Caleb Knepper; Elizabeth A. Savory; Brad Day

The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress.


Journal of General Plant Pathology | 2011

Inhibition of prepenetration processes of the powdery mildew Golovinomyces orontii on host inflorescence stems is reduced in the Arabidopsis cuticular mutant cer3 but not in cer1

Noriko Inada; Elizabeth A. Savory

The obligate biotrophic fungus Golovinomyces orontii causes powdery mildew (PM) disease on its host Arabidopsis thaliana. Most research on the G. orontii–Arabidopsis pathosystem uses rosette leaves as experimental materials, so little is known about the behavior of G. orontii on other Arabidopsis organs. We thus conducted microscopic analyses of the PM infection process on leaves, stems, fruits and roots of Arabidopsis. Adaxial and abaxial surfaces of mature rosette leaves supported G. orontii infection, but growth was somewhat suppressed on cauline leaves. Prepenetration processes (germination and appressorium formation) were strongly inhibited on stems, fruits and roots. To test the effect of alterations in the Arabidopsis cuticle on the inhibition of prepenetration processes on stems, we used cuticle mutants of Arabidopsiseceriferum (cer) cer1 and cer3. Both mutants had been characterized for reduction in cuticular wax, but our chlorophyll leaching assay revealed increased cuticle permeability only in cer3. Mature rosette leaves and stems of cer1 and cer3 were inoculated, and prepenetration inhibition on stems was found to be significantly reduced in cer3 but not in cer1. We discuss the function of the cuticle in prepenetration inhibition, as well as our finding on suppression of G. orontii growth and reproduction on cer3 rosette leaves.

Collaboration


Dive into the Elizabeth A. Savory's collaboration.

Top Co-Authors

Avatar

Brad Day

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Robin Buell

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caleb Knepper

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge