Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth C. Dickey is active.

Publication


Featured researches published by Elizabeth C. Dickey.


Applied Physics Letters | 2000

Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites

Dali Qian; Elizabeth C. Dickey; Rodney Andrews; Terry D. Rantell

Multiwall carbon nanotubes have been dispersed homogeneously throughout polystyrene matrices by a simple solution-evaporation method without destroying the integrity of the nanotubes. Tensile tests on composite films show that 1 wt % nanotube additions result in 36%–42% and ∼25% increases in elastic modulus and break stress, respectively, indicating significant load transfer across the nanotube-matrix interface. In situ transmission electron microscopy studies provided information regarding composite deformation mechanisms and interfacial bonding between the multiwall nanotubes and polymer matrix.


Journal of Materials Research | 2001

Titanium oxide nanotube arrays prepared by anodic oxidation

Dawei Gong; Craig A. Grimes; Oomman K. Varghese; Wenchong Hu; R. S. Singh; Zhi Chen; Elizabeth C. Dickey

Titanium oxide nanotubes were fabricated by anodic oxidation of a pure titanium sheet in an aqueous solution containing 0.5 to 3.5 wt% hydrofluoric acid. These tubes are well aligned and organized into high-density uniform arrays. While the tops of the tubes are open, the bottoms of the tubes are closed, forming a barrier layer structure similar to that of porous alumina. The average tube diameter, ranging in size from 25 to 65 nm, was found to increase with increasing anodizing voltage, while the length of the tube was found independent of anodization time. A possible growth mechanism is presented.


Chemical Physics Letters | 1999

Continuous production of aligned carbon nanotubes: a step closer to commercial realization

Rodney Andrews; David Jacques; Apparao M. Rao; Frank Derbyshire; Dali Qian; X. Fan; Elizabeth C. Dickey; Jian Chen

High-purity aligned multi-walled carbon nanotubes MWNTs were synthesized through the catalytic decomposition of a ferrocene-xylene mixture at ; 6758C in a quartz tube reactor and over quartz substrates, with a conversion of ; 25% of the total hydrocarbon feedstock. Under the experimental conditions used, scanning electron microscope images reveal that the MWNT array grows perpendicular to the quartz substrates at an average growth rate of ; 25 mmrh. A process of this nature which does not require preformed substrates, and which operates at atmospheric pressure and moderate temperatures, could be scaled up for continuous or semi-continuous production of MWNTs. q 1999 Elsevier Science B.V. All rights reserved.


Journal of Materials Research | 2003

Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

Oomman K. Varghese; Dawei Gong; Maggie Paulose; Craig A. Grimes; Elizabeth C. Dickey

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.


Sensors and Actuators B-chemical | 2001

Gas sensing characteristics of multi-wall carbon nanotubes

Oomman K. Varghese; P.D. Kichambre; Dawei Gong; Keat Ghee Ong; Elizabeth C. Dickey; Craig A. Grimes

Abstract Impedance spectroscopy was used to study the gas sensing behavior of both capacitance and resistance based sensors employing multi-wall carbon nanotubes (MWNTs) as the active sensing element. Studies revealed the chemisorption of reducing gases upon the surface of the MWNTs. Increasing sensor impedance was observed with increasing humidity or partial pressures of ammonia, carbon monoxide, and carbon dioxide. The impedance changes are attributed to p-type conductivity in semiconducting MWNTs, and the formation of Schottky barriers between the metallic and semiconducting nanotubes. Reversible behavior is demonstrated for the MWNT sensors in response to humidity, carbon monoxide and carbon dioxide. The MWNT sensors strongly respond to ammonia behaving as dosimeters.


Chemical Physics Letters | 1999

Model of carbon nanotube growth through chemical vapor deposition

Susan B. Sinnott; Rodney Andrews; Dali Qian; Apparao M. Rao; Zugang Mao; Elizabeth C. Dickey; Frank Derbyshire

Abstract This Letter outlines a model to account for the catalyzed growth of nanotubes by chemical vapor deposition. It proposes that their formation and growth is an extension of other known processes in which graphitic structures form over metal surfaces at moderate temperatures through the decomposition of organic precursors. Importantly, the model also states that the form of carbon produced depends on the physical dimensions of the catalyzed reactions. Experimental data are presented that correlate nanotube diameters to the size of the catalyst particles. Nanotube stability as a function of nanotube type, length and diameter are also investigated through theoretical calculations.


Carbon | 2001

Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures

Rodney Andrews; David Jacques; Dali Qian; Elizabeth C. Dickey

In this work, we present a systematic study of the effects of graphitization on the structural perfection of multiwalled carbon nanotubes. High purity nanotubes were produced by a low temperature CVD method and subsequently annealed at temperatures between 1600 and 3000°C. The nanotubes were characterized for chemical purity, interlayer spacing, and defect healing. The graphitization procedure was found to remove residual metal catalyst in the nanotubes and reduce the wall defects as reflected in a reduced interlayer spacing between the graphene shells. Graphitization presents a low-cost, commercially viable method of purifying and ordering multiwall carbon nanotubes.


Journal of Materials Research | 1998

Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material

Yongsheng Chen; R. C. Haddon; S. L. Fang; Apparao M. Rao; P. C. Eklund; Wonhee Lee; Elizabeth C. Dickey; E. A. Grulke; Pendergrass Jc; Ashok J. Chavan; Boyd E. Haley; Richard E. Smalley

We have subjected single-walled carbon nanotube materials (SWNTMs) to a variety of organic functionalization reactions. These reactions include radioactive photolabeling studies using diradical and nitrene sources, and treatment with dichlorocarbene and Birch reduction conditions. All of the reactions provide evidence for chemical attachment to the SWNTMs, but because of the impure nature of the staring materials, we are unable to ascertain the site of reaction. In the case of dichlorocarbene we are able to show the presence of chlorine in the SWNT bundles, but as a result of the large amount of amorphous carbon that is attached to the tube walls, we cannot distinguish between attachment of dichlorocarbene to the walls of the SWNTs and reaction with the amorphous carbon.


Applied Physics Letters | 2001

Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method

Mahendra K. Sunkara; Shashank Sharma; Raul Miranda; G. Lian; Elizabeth C. Dickey

Silicon nanowires will find applications in nanoscale electronics and optoelectronics both as active and passive components. Here, we demonstrate a low-temperature vapor–liquid–solid synthesis method that uses liquid-metal solvents with low solubility for silicon and other elemental semiconductor materials. This method eliminates the usual requirement of quantum-sized droplets in order to obtain quantum-scale one-dimensional structures. Specifically, we synthesized silicon nanowires with uniform diameters distributed around 6 nm using gallium as the molten solvent, at temperatures less than 400 °C in hydrogen plasma. The potential exists for bulk synthesis of silicon nanowires at temperatures significantly lower than 400 °C. Gallium forms a eutectic with silicon near room temperature and offers a wide temperature range for bulk synthesis of nanowires. These properties are important for creating monodispersed one-dimensional structures capable of yielding sharp hetero- or homointerfaces.


Journal of Applied Physics | 2004

Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II—insulation resistance degradation under applied dc bias

Gai-Ying Yang; G. D. Lian; Elizabeth C. Dickey; Clive A. Randall; D. E. Barber; P. Pinceloup; M. A. Henderson; R. A. Hill; J. J. Beeson; D. J. Skamser

The microchemical and microstructural origins of insulation-resistance degradation in BaTiO3-based capacitors are studied by complementary impedance spectroscopy and analytical transmission electron microscopy. The degradation under dc-field bias involves electromigration and accumulation of oxygen vacancies at interfaces. The nonstoichiometric BaTiO3−δ becomes locally more conducting through increased oxygen vacancy concentration and Ti ion reduction. The symmetry across the dielectric layer and locally across each grain is broken during the degradation process. Locally, the nonstoichiometry becomes so severe that metastable lattice structures are formed. The degradation in insulation resistance at the grain boundaries and electrode interfaces is associated with the double Schottky-barrier potential lowering and narrowing. This may correlate with an effective decrease in net acceptor charge density at the grain boundaries.

Collaboration


Dive into the Elizabeth C. Dickey's collaboration.

Top Co-Authors

Avatar

Joan M. Redwing

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Clive A. Randall

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Craig A. Grimes

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jing Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gai-Ying Yang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anton V. Polotai

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Weng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bryan D. Gauntt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oomman K. Varghese

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge