Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Fullam is active.

Publication


Featured researches published by Elizabeth Fullam.


Science | 2009

Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis

Vadim Makarov; Giulia Manina; Katarína Mikušová; Ute Möllmann; Olga Ryabova; Brigitte Saint-Joanis; Neeraj Dhar; Maria Rosalia Pasca; Silvia Buroni; Anna Paola Lucarelli; Anna Milano; Edda De Rossi; Martina Belanová; Adela Bobovská; Petronela Dianišková; Jana Korduláková; Claudia Sala; Elizabeth Fullam; Patricia Schneider; John D. McKinney; Priscille Brodin; Thierry Christophe; Simon J. Waddell; Philip D. Butcher; Jakob Albrethsen; Ida Rosenkrands; Roland Brosch; Vrinda Nandi; Sheshagiri Gaonkar; Radha Shandil

Ammunition for the TB Wars Tuberculosis is a major human disease of global importance resulting from infection with the air-borne pathogen Mycobacterium tuberculosis, which is becoming increasingly resistant to all available drugs. An antituberculosis benzothiazinone compound kills mycobacterium in infected cells and in mice. Makarov et al. (p. 801) have identified a sulfur atom and nitro residues important for benzothiazinones activity and used genetic methods and biochemical analysis to identify its target in blocking arabinogalactan biosynthesis during cell-wall synthesis. The compound affects the same pathway as ethambutol, and thus a benzothiazinone drug has the potential to become an important part of treatment of drug-resistant disease and, possibly, replace the less effective ethambutol in the primary treatment of tuberculosis. An isomerase required for cell-wall synthesis is a target for an alternative drug lead for tuberculosis treatment. New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.


Science Translational Medicine | 2012

Structural Basis for Benzothiazinone-Mediated Killing of Mycobacterium tuberculosis

João Neres; Florence Pojer; Elisabetta Molteni; Laurent R. Chiarelli; Neeraj Dhar; Stefanie Boy-Röttger; Silvia Buroni; Elizabeth Fullam; Giulia Degiacomi; Anna Paola Lucarelli; Randy J. Read; Giuseppe Zanoni; Dale E. Edmondson; Edda De Rossi; Maria Rosalia Pasca; John D. McKinney; Paul J. Dyson; Giovanna Riccardi; Andrea Mattevi; Stewart T. Cole; Claudia Binda

The crystal structure of the mycobacterial DprE1 reveals how the TB drug benzothiazinone BTZ043 blocks this microbial enzyme target. New TB Drug Snapped in Action Tuberculosis (TB) is a major global health problem that claimed 1.4 million lives in 2010. TB is becoming incurable with existing antibiotics, as infections with multidrug-resistant strains of the causative pathogen Mycobacterium tuberculosis continue to climb. To make matters worse, many patients with TB also suffer from HIV/AIDS, making both diseases even more difficult to treat. It has been more than 40 years since a new drug for TB was approved for clinical use. In 2009, a study published in Science described a promising new drug candidate, a synthetic organic molecule known as BTZ043, which is active in the low nanomolar range against mycobacteria. BTZ043 inhibits a bacterial epimerase enzyme that produces the sugar d-arabinose, the sole precursor for the synthesis of a polysaccharide that is an essential component of the bacterial cell wall. In a key follow-up study, Neres et al. use x-ray crystallography to obtain a picture of the epimerase at the atomic level. They demonstrate that the drug serves as a suicide substrate that is converted by the epimerase into a highly reactive species, and they present a snapshot that shows covalent binding of this species to the active site of the enzyme. Together with biochemical work, the three-dimensional structure explains why BTZ043 inactivates its target so effectively, thus killing the bacteria. By attaching a fluorescent probe to one side of the drug, the authors discovered that the epimerase enzyme becomes localized to the poles of live bacteria, thus pinpointing the site of action. The availability of the epimerase structure and a deeper understanding of its catalytic properties open a host of avenues for rational drug discovery that hopefully will result in new medicines for fighting TB. The benzothiazinone BTZ043 is a tuberculosis drug candidate with nanomolar whole-cell activity. BTZ043 targets the DprE1 catalytic component of the essential enzyme decaprenylphosphoryl-β-d-ribofuranose-2′-epimerase, thus blocking biosynthesis of arabinans, vital components of mycobacterial cell walls. Crystal structures of DprE1, in its native form and in a complex with BTZ043, reveal formation of a semimercaptal adduct between the drug and an active-site cysteine, as well as contacts to a neighboring catalytic lysine residue. Kinetic studies confirm that BTZ043 is a mechanism-based, covalent inhibitor. This explains the exquisite potency of BTZ043, which, when fluorescently labeled, localizes DprE1 at the poles of growing bacteria. Menaquinone can reoxidize the flavin adenine dinucleotide cofactor in DprE1 and may be the natural electron acceptor for this reaction in the mycobacterium. Our structural and kinetic analysis provides both insight into a critical epimerization reaction and a platform for structure-based design of improved inhibitors.


Expert Opinion on Drug Metabolism & Toxicology | 2007

Arylamine N-acetyltransferases

Edith Sim; Isaac M. Westwood; Elizabeth Fullam

Arylamine N-acetyltransferases (NATs), known as drug- and carcinogen-metabolising enzymes, have had historic roles in cellular metabolism, carcinogenesis and pharmacogenetics, including epidemiological studies of disease susceptibility. NAT research in the past 5 years builds on that history and additionally paves the way for establishing the following new concepts in biology and opportunities in drug discovery: i) NAT polymorphisms can be used as tools in molecular anthropology to study human evolution; ii) tracing NAT protein synthesis and degradation within cells is providing insight into protein folding in cell biology; iii) studies on control of NAT gene expression may help to understand the increase in the human NAT isoenzyme, NAT1, in breast cancer; iv) a NAT homologue in mycobacteria plays an essential role in cell-wall synthesis and mycobacterial survival inside host macrophage, thus identifying a novel biochemical pathway; v) transgenic mice, with genetic modifications of all Nat genes, provide in vivo tools for drug metabolism; and vi) structures of NAT isoenzymes provide essential in silico tools for drug discovery.


Protein Science | 2005

Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis

James Sandy; Simon J. Holton; Elizabeth Fullam; Edith Sim; Martin Noble

Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug‐resistant strains of TB. Arylamine N‐acetyltransferase (NAT) is a drug‐metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N‐acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti‐tubercular therapy.


Current Topics in Medicinal Chemistry | 2006

Structure and Mechanism of Arylamine N-Acetyltransferases

Isaac M. Westwood; Akane Kawamura; Elizabeth Fullam; Angela J. Russell; Stephen G. Davies; Edith Sim

Arylamine N-acetyltransferases (NATs) are a family of phase II drug-metabolising enzymes which are important in the biotransformation of various aromatic and heterocyclic amines and hydroxylamines, arylhydrazines and arylhydrazides. NATs are present in a wide range of eukaryotes and prokaryotes. Humans have two functional NAT isoforms, both of which are highly polymorphic. The pharmacogenetics of NATs is an area which has been extensively studied. The determination of the X-ray crystal structure of NAT from Salmonella typhimurium led to the identification of the catalytically essential triad of residues: Cys-His-Asp, which is present in all functional NAT enzymes. Recent co-crystallisation data and in silico docking studies of NAT from Mycobacterium smegmatis with substrates and inhibitors have aided the identification of important contact residues within the active site. The X-ray crystal structures of four prokaryotic NAT proteins have now been determined, and these have been used to generate structural models of eukaryotic NATs, providing valuable insight into their active-site architecture. In addition to aiding crystallographic experiments, recent progress in the production of recombinant prokaryotic and eukaryotic NATs has allowed comparative studies of the kinetics and activity profiles of these enzymes. In this review we present an overview of recent structural and activity studies on NAT enzymes, and we outline how in silico methods may be used to predict NAT protein-ligand interactions based on the current knowledge.


Protein & Cell | 2010

Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars

Isaac M. Westwood; Sanjib Bhakta; Angela J. Russell; Elizabeth Fullam; Matthew C. Anderton; Akane Kawamura; Andrew W. Mulvaney; Richard Vickers; Veemal Bhowruth; Gurdyal S. Besra; Ajit Lalvani; Stephen G. Davies; Edith Sim

New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules—triazoles—in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved.


Biochemical Journal | 2009

Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis.

Nathan A. Lack; Akane Kawamura; Elizabeth Fullam; Nicola Laurieri; Stacey Beard; Angela J. Russell; Dimitrios Evangelopoulos; Isaac M. Westwood; Edith Sim

In Mycobacterium tuberculosis, the genes hsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) and nat (arylamine N-acetyltransferase) are essential for survival inside of host macrophages. These genes act as an operon and have been suggested to be involved in cholesterol metabolism. However, the role of NAT in this catabolic pathway has not been determined. In an effort to better understand the function of these proteins, we have expressed, purified and characterized TBNAT (NAT from M. tuberculosis) and HsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) from M. tuberculosis. Both proteins demonstrated remarkable heat stability with TBNAT and HsaD retaining >95% of their activity after incubation at 60 degrees C for 30 min. The first and second domains of TBNAT were demonstrated to be very important to the heat stability of the protein, as the transfer of these domains caused a dramatic reduction in the heat stability. The specific activity of TBNAT was tested against a broad range of acyl-CoA cofactors using hydralazine as a substrate. TBNAT was found to be able to utilize not just acetyl-CoA, but also n-propionyl-CoA and acetoacetyl-CoA, although at a lower rate. As propionyl-CoA is a product of cholesterol catabolism, we propose that NAT could have a role in the utilization of this important cofactor.


Current Drug Metabolism | 2008

Arylamine N-Acetyltransferases in Mycobacteria

Edith Sim; James Sandy; Dimitrios Evangelopoulos; Elizabeth Fullam; Sanjib Bhakta; Isaac M. Westwood; Anna Krylova; Nathan A. Lack; Martin Noble

Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure.


Open Biology | 2012

Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme

Elizabeth Fullam; Florence Pojer; Terese Bergfors; T. Alwyn Jones; Stewart T. Cole

The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.


Protein & Cell | 2010

Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site

Areej Abuhammad; Edward D. Lowe; Elizabeth Fullam; Martin Noble; Elspeth F. Garman; Edith Sim

Treatment of latent tuberculosis infection remains an important goal of global TB eradication. To this end, targets that are essential for intracellular survival of Mycobacterium tuberculosis are particularly attractive. Arylamine N-acetyltransferase (NAT) represents such a target as it is, along with the enzymes encoded by the associated gene cluster, essential for mycobacterial survival inside macrophages and involved in cholesterol degradation. Cholesterol is likely to be the fuel for M. tuberculosis inside macrophages. Deleting the nat gene and inhibiting the NAT enzyme prevents survival of the microorganism in macrophages and induces cell wall alterations, rendering the mycobacterium sensitive to antibiotics to which it is normally resistant. To date, NAT from M. marinum (MMNAT) is considered the best available model for NAT from M. tuberculosis (TBNAT). The enzyme catalyses the acetylation and propionylation of arylamines and hydrazines. Hydralazine is a good acetyl and propionyl acceptor for both MMNAT and TBNAT. The MMNAT structure has been solved to 2.1 Å resolution following crystallisation in the presence of hydralazine and is compared to available NAT structures. From the mode of ligand binding, features of the binding pocket can be identified, which point to a novel mechanism for the acetylation reaction that results in a 3-methyltriazolo[3,4-a]phthalazine ring compound as product.

Collaboration


Dive into the Elizabeth Fullam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac M. Westwood

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge