Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth G. Holliday is active.

Publication


Featured researches published by Elizabeth G. Holliday.


PLOS ONE | 2013

Genetic loci for retinal arteriolar microcirculation

Xueling Sim; Richard Jensen; M. Kamran Ikram; Mary Frances Cotch; Xiaohui Li; Stuart MacGregor; Jing Xie; Albert V. Smith; Eric Boerwinkle; Paul Mitchell; Ronald Klein; Barbara Ek Klein; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Paulus T. V. M. de Jong; Albert Hofman; Fernando Rivadeneira; André G. Uitterlinden; Cornelia M. van Duijn; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Lenore J. Launer; John Attia; Paul N. Baird; Stephen B. Harrap; Elizabeth G. Holliday

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10−8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10−12 in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


Nature Genetics | 2012

Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke.

Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams

Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.


PLOS ONE | 2013

Genome-Wide Association Study of Retinopathy in Individuals without Diabetes

Richard Jensen; Xueling Sim; Xiaohui Li; Mary Frances Cotch; M. Kamran Ikram; Elizabeth G. Holliday; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Barbara E. K. Klein; Lenore J. Launer; Albert V. Smith; Eric Boerwinkle; Ning Cheung; Alex W. Hewitt; Gerald Liew; Paul Mitchell; Jie Jin Wang; John Attia; Rodney J. Scott; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Kent D. Taylor; Albert Hofman; Paulus T. V. M. de Jong; Fernando Rivadeneira; André G. Uitterlinden; Wan Ting Tay

Background Mild retinopathy (microaneurysms or dot-blot hemorrhages) is observed in persons without diabetes or hypertension and may reflect microvascular disease in other organs. We conducted a genome-wide association study (GWAS) of mild retinopathy in persons without diabetes. Methods A working group agreed on phenotype harmonization, covariate selection and analytic plans for within-cohort GWAS. An inverse-variance weighted fixed effects meta-analysis was performed with GWAS results from six cohorts of 19,411 Caucasians. The primary analysis included individuals without diabetes and secondary analyses were stratified by hypertension status. We also singled out the results from single nucleotide polymorphisms (SNPs) previously shown to be associated with diabetes and hypertension, the two most common causes of retinopathy. Results No SNPs reached genome-wide significance in the primary analysis or the secondary analysis of participants with hypertension. SNP, rs12155400, in the histone deacetylase 9 gene (HDAC9) on chromosome 7, was associated with retinopathy in analysis of participants without hypertension, −1.3±0.23 (beta ± standard error), p = 6.6×10−9. Evidence suggests this was a false positive finding. The minor allele frequency was low (∼2%), the quality of the imputation was moderate (r2 ∼0.7), and no other common variants in the HDAC9 gene were associated with the outcome. SNPs found to be associated with diabetes and hypertension in other GWAS were not associated with retinopathy in persons without diabetes or in subgroups with or without hypertension. Conclusions This GWAS of retinopathy in individuals without diabetes showed little evidence of genetic associations. Further studies are needed to identify genes associated with these signs in order to help unravel novel pathways and determinants of microvascular diseases.


PLOS Genetics | 2010

Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo

M. Kamran Ikram; Sim Xueling; Richard Jensen; Mary Frances Cotch; Alex W. Hewitt; M. Arfan Ikram; Jie Jin Wang; Ronald Klein; Barbara E. K. Klein; Monique M.B. Breteler; Ning Cheung; Gerald Liew; Paul Mitchell; André G. Uitterlinden; Fernando Rivadeneira; Albert Hofman; Paulus T. V. M. de Jong; Cornelia M. van Duijn; Linda Kao; Ching-Yu Cheng; Albert V. Smith; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Fridbert Jonasson; Gudny Eiriksdottir; Thor Aspelund; Tamara B. Harris; Lenore J. Launer

There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10−8) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%–3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10−25, within the RASIP1 locus), rs225717 (6q24; p = 1.25×10−16, adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10−13, in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10−16, adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.


Nature Genetics | 2012

Common variants at 6p21.1 are associated with large artery atherosclerotic stroke

Elizabeth G. Holliday; Jane Maguire; Tiffany-Jane Evans; Simon A. Koblar; Jim Jannes; Jonathan Sturm; Graeme J. Hankey; Ross Baker; Jonathan Golledge; Mark W. Parsons; Rainer Malik; Mark McEvoy; Erik Biros; Martin D. Lewis; Lisa F. Lincz; Roseanne Peel; Christopher Oldmeadow; Wayne Smith; Pablo Moscato; Simona Barlera; Steve Bevan; Joshua C. Bis; Eric Boerwinkle; Giorgio B. Boncoraglio; Thomas G. Brott; Robert D. Brown; Yu-Ching Cheng; John W. Cole; Ioana Cotlarciuc; William J. Devan

Genome-wide association studies (GWAS) have not consistently detected replicable genetic risk factors for ischemic stroke, potentially due to etiological heterogeneity of this trait. We performed GWAS of ischemic stroke and a major ischemic stroke subtype (large artery atherosclerosis, LAA) using 1,162 ischemic stroke cases (including 421 LAA cases) and 1,244 population controls from Australia. Evidence for a genetic influence on ischemic stroke risk was detected, but this influence was higher and more significant for the LAA subtype. We identified a new LAA susceptibility locus on chromosome 6p21.1 (rs556621: odds ratio (OR) = 1.62, P = 3.9 × 10−8) and replicated this association in 1,715 LAA cases and 52,695 population controls from 10 independent population cohorts (meta-analysis replication OR = 1.15, P = 3.9 × 10−4; discovery and replication combined OR = 1.21, P = 4.7 × 10−8). This study identifies a genetic risk locus for LAA and shows how analyzing etiological subtypes may better identify genetic risk alleles for ischemic stroke.


PLOS ONE | 2013

Insights into the Genetic Architecture of Early Stage Age-Related Macular Degeneration: A Genome-Wide Association Study Meta-Analysis

Elizabeth G. Holliday; Albert V. Smith; Belinda K. Cornes; Gabriëlle H.S. Buitendijk; Richard Jensen; Xueling Sim; Thor Aspelund; Tin Aung; Paul N. Baird; Eric Boerwinkle; Ching-Yu Cheng; Cornelia M. van Duijn; Gudny Eiriksdottir; Vilmundur Gudnason; Tamara B. Harris; Alex W. Hewitt; Michael Inouye; Fridbert Jonasson; Barbara E. K. Klein; Lenore J. Launer; Xiaohui Li; Gerald Liew; Thomas Lumley; Patrick McElduff; Barbara McKnight; Paul Mitchell; Bruce M. Psaty; Elena Rochtchina; Jerome I. Rotter; Rodney J. Scott

Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10−31) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10−24) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10−6) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10−6) and upstream of GLI2 (rs6721654; P = 6.5×10−6), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10−6), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.


PLOS ONE | 2013

Short Sleep Duration Is Associated with Risk of Future Diabetes but Not Cardiovascular Disease: a Prospective Study and Meta-Analysis

Elizabeth G. Holliday; Christopher A. Magee; Leonard Kritharides; Emily Banks; John Attia

Epidemiologic studies have observed association between short sleep duration and both cardiovascular disease (CVD) and type 2 diabetes, although these results may reflect confounding by pre-existing illness. This study aimed to determine whether short sleep duration predicts future CVD or type 2 diabetes after accounting for baseline health. Baseline data for 241,949 adults were collected through the 45 and Up Study, an Australian prospective cohort study, with health outcomes identified via electronic database linkage. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals. Compared to 7h sleep, <6h sleep was associated with incident CVD in participants reporting ill-health at baseline (HR=1·38 [95% CI: 1·12-1·70]), but not after excluding those with baseline illness and adjusting for baseline health status (1·03 [0·88-1·21]). In contrast, the risk of incident type 2 diabetes was significantly increased in those with <6h versus 7h sleep, even after excluding those with baseline illness and adjusting for baseline health (HR=1·29 [1·08-1·53], P=0.004). This suggests the association is valid and does not simply reflect confounding or reverse causation. Meta-analysis of ten prospective studies including 447,124 participants also confirmed an association between short sleep and incident diabetes (1·33 [1·20-1·48]). Obtaining less than 6 hours of sleep each night (compared to 7 hours) may increase type 2 diabetes risk by approximately 30%.


Neurology | 2014

Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12.

Laura L. Kilarski; Sefanja Achterberg; William J. Devan; Matthew Traylor; Rainer Malik; Arne Lindgren; Guillame Pare; Pankaj Sharma; Agniesczka Slowik; Vincent Thijs; Matthew Walters; Bradford B. Worrall; Michèle M. Sale; Ale Algra; L. Jaap Kappelle; Cisca Wijmenga; Bo Norrving; Johanna K. Sandling; Lars Rönnblom; An Goris; Andre Franke; C. Sudlow; Peter M. Rothwell; Christopher Levi; Elizabeth G. Holliday; Myriam Fornage; Bruce M. Psaty; Solveig Gretarsdottir; Unnar Thorsteinsdottir; Sudha Seshadri

Objectives: To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases. Methods: Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico “look-up” of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls. Results: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07–1.13], p = 7.12 × 10−11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90–1.17], p = 0.695). Conclusion: Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.


Journal of the National Cancer Institute | 2015

Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis

Kevin T. Nead; Stephen J. Sharp; Deborah Thompson; Jodie N. Painter; David B. Savage; Robert K. Semple; Adam Barker; John Perry; John Attia; Alison M. Dunning; Douglas F. Easton; Elizabeth G. Holliday; Luca A. Lotta; Tracy A. O’Mara; Mark McEvoy; Paul Pharoah; Rodney J. Scott; Amanda B. Spurdle; Claudia Langenberg; Nicholas J. Wareham; Robert A. Scott

Background: Insulinemia and type 2 diabetes (T2D) have been associated with endometrial cancer risk in numerous observational studies. However, the causality of these associations is uncertain. Here we use a Mendelian randomization (MR) approach to assess whether insulinemia and T2D are causally associated with endometrial cancer. Methods: We used single nucleotide polymorphisms (SNPs) associated with T2D (49 variants), fasting glucose (36 variants), fasting insulin (18 variants), early insulin secretion (17 variants), and body mass index (BMI) (32 variants) as instrumental variables in MR analyses. We calculated MR estimates for each risk factor with endometrial cancer using an inverse-variance weighted method with SNP-endometrial cancer associations from 1287 case patients and 8273 control participants. Results: Genetically predicted higher fasting insulin levels were associated with greater risk of endometrial cancer (odds ratio [OR] per standard deviation = 2.34, 95% confidence internal [CI] = 1.06 to 5.14, P = .03). Consistently, genetically predicted higher 30-minute postchallenge insulin levels were also associated with endometrial cancer risk (OR = 1.40, 95% CI = 1.12 to 1.76, P = .003). We observed no associations between genetic risk of type 2 diabetes (OR = 0.91, 95% CI = 0.79 to 1.04, P = .16) or higher fasting glucose (OR = 1.00, 95% CI = 0.67 to 1.50, P = .99) and endometrial cancer. In contrast, endometrial cancer risk was higher in individuals with genetically predicted higher BMI (OR = 3.86, 95% CI = 2.24 to 6.64, P = 1.2x10-6). Conclusion: This study provides evidence to support a causal association of higher insulin levels, independently of BMI, with endometrial cancer risk.

Collaboration


Dive into the Elizabeth G. Holliday's collaboration.

Top Co-Authors

Avatar

John Attia

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark McEvoy

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Maguire

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Bevan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Jie Jin Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Dale R. Nyholt

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge