Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Grass is active.

Publication


Featured researches published by Elizabeth Grass.


Infection and Immunity | 2010

Examination of Type IV Pilus Expression and Pilus-Associated Phenotypes in Kingella kingae Clinical Isolates

Thomas E. Kehl-Fie; Eric A. Porsch; Pablo Yagupsky; Elizabeth Grass; Caroline Obert; Daniel K. Benjamin; Joseph W. St. Geme

ABSTRACT Kingella kingae is a gram-negative bacterium that is being recognized increasingly as a cause of septic arthritis and osteomyelitis in young children. Previous work established that K. kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. PilA1 is the major pilus subunit in K. kingae type IV pili and is essential for pilus assembly. To develop a better understanding of the role of K. kingae type IV pili during colonization and invasive disease, we examined a collection of clinical isolates for pilus expression and in vitro adherence. In addition, in a subset of isolates we performed nucleotide sequencing to assess the level of conservation of PilA1. The majority of respiratory and nonendocarditis blood isolates were piliated, while the majority of joint fluid, bone, and endocarditis blood isolates were nonpiliated. The piliated isolates formed either spreading/corroding or nonspreading/noncorroding colonies and were uniformly adherent, while the nonpiliated isolates formed domed colonies and were nonadherent. PilA1 sequence varied significantly from strain to strain, resulting in substantial variability in antibody reactivity. These results suggest that type IV pili may confer a selective advantage on K. kingae early in infection and a selective disadvantage on K. kingae at later stages in the pathogenic process. We speculate that PilA1 is immunogenic during natural infection and undergoes antigenic variation to escape the immune response.


PLOS Genetics | 2015

Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

William E. Kraus; Deborah M. Muoio; Robert D. Stevens; Damian M. Craig; James R. Bain; Elizabeth Grass; Carol Haynes; Lydia Kwee; Xuejun Qin; Dorothy H. Slentz; Deidre R. Krupp; Michael J. Muehlbauer; Elizabeth R. Hauser; Simon G. Gregory; Christopher B. Newgard; Svati H. Shah

Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.


Obstetrics & Gynecology | 2012

Matrix metalloproteinase-9 genetic polymorphisms and the risk for advanced pelvic organ prolapse

Jennifer M. Wu; Anthony G. Visco; Elizabeth Grass; Damian M. Craig; Rebekah G. Fulton; Carol Haynes; Alison C. Weidner; Svati H. Shah

OBJECTIVE: Matrix metalloproteinase-9 (MMP9) is a protease associated with degradation of collagen and elastin. Because increased MMP9 activity in vaginal tissue has been associated with pelvic organ prolapse (POP), we sought to comprehensively estimate MMP9 genetic variants and the risk for advanced prolapse. METHODS: This is a candidate gene association study of women with stage III–IV prolapse (case group, n=239) and women with stage 0–1 prolapse (control group, n=197). We attempted to oversample “extreme” phenotypes, including younger women with severe prolapse and older women without prolapse, in an attempt to concentrate the genetic effect. We used a linkage disequilibrium tagged approach to identify single nucleotide polymorphisms in MMP9 to evaluate in our study. To minimize potential confounding by race, our analysis focused on non-Hispanic white women. We performed multivariable logistic regression to estimate the association between MMP9 single nucleotide polymorphisms and case–control status, adjusting for age and vaginal parity. RESULTS: Women with advanced prolapse were slightly younger (64.8±10.3 compared with 69.0±10.2 years, P<.001) and more likely to have had one or more vaginal deliveries (96.6% compared with 82.2%, P<.001) when compared with control participants. Eight single nucleotide polymorphisms were assessed, which represented 93% coverage of the MMP9 gene. Of these, two were associated with advanced prolapse: 1) rs3918253 (adjusted odds ratio [OR] 0.64, 95% confidence interval [CI] 0.41–1.0, P=.05); and 2) rs3918256 (adjusted OR 0.64, 95% CI 0.41–1.01, P=.05). CONCLUSION: MMP9 is a biologically plausible candidate gene for POP given our results. LEVEL OF EVIDENCE: II


American Journal of Obstetrics and Gynecology | 2012

Comprehensive analysis of LAMC1 genetic variants in advanced pelvic organ prolapse

Jennifer M. Wu; Anthony G. Visco; Elizabeth Grass; Damian M. Craig; Rebekah G. Fulton; Carol Haynes; Cindy L. Amundsen; Svati H. Shah

OBJECTIVE We sought to comprehensively evaluate the association of laminin gamma-1 (LAMC1) and advance pelvic organ prolapse. STUDY DESIGN We conducted a candidate gene association of patients (n = 239) with stages III-IV prolapse and controls (n = 197) with stages 0-I prolapse. We used a linkage disequilibrium (LD)-tagged approach to identify single-nucleotide polymorphisms (SNPs) in LAMC1 and focused on non-Hispanic white women to minimize population stratification. Additive and dominant multivariable logistic regression models were used to test for association between individual SNPs and advanced prolapse. RESULTS Fourteen SNPs representing 99% coverage of LAMC1 were genotyped. There was no association between SNP rs10911193 and advanced prolapse (P = .34). However, there was a trend toward significance for SNPs rs1413390 (P = .11), rs20563 (P = .11), and rs20558 (P = .12). CONCLUSION Although we found that the previously reported LAMC1 SNP rs10911193 was not associated with nonfamilial prolapse, our results support further investigation of this candidate gene in the pathophysiology of prolapse.


PLOS ONE | 2016

Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

Cavin K. Ward-Caviness; Lucas M. Neas; Colette Blach; Carol Haynes; Karen LaRocque-Abramson; Elizabeth Grass; Elaine Dowdy; Robert B. Devlin; David Diaz-Sanchez; Wayne E. Cascio; Marie Lynn Miranda; Simon G. Gregory; Svati H. Shah; William E. Kraus; Elizabeth R. Hauser

There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes.


PLOS ONE | 2016

Case-Only Survival Analysis Reveals Unique Effects of Genotype, Sex, and Coronary Disease Severity on Survivorship

Jennifer R. Dungan; Xuejun Qin; Benjamin D. Horne; John F. Carlquist; Abanish Singh; Melissa Hurdle; Elizabeth Grass; Carol Haynes; Simon G. Gregory; Svati H. Shah; Elizabeth R. Hauser; William E. Kraus

Survival bias may unduly impact genetic association with complex diseases; gene-specific survival effects may further complicate such investigations. Coronary artery disease (CAD) is a complex phenotype for which little is understood about gene-specific survival effects; yet, such information can offer insight into refining genetic associations, improving replications, and can provide candidate genes for both mortality risk and improved survivorship in CAD. Building on our previous work, the purpose of this current study was to: evaluate LSAMP SNP-specific hazards for all-cause mortality post-catheterization in a larger cohort of our CAD cases; and, perform additional replication in an independent dataset. We examined two LSAMP SNPs—rs1462845 and rs6788787—using CAD case-only Cox proportional hazards regression for additive genetic effects, censored on time-to-all-cause mortality or last follow-up among Caucasian subjects from the Catheterization Genetics Study (CATHGEN; n = 2,224) and the Intermountain Heart Collaborative Study (IMHC; n = 3,008). Only after controlling for age, sex, body mass index, histories of smoking, type 2 diabetes, hyperlipidemia and hypertension (HR = 1.11, 95%CI = 1.01–1.22, p = 0.032), rs1462845 conferred significantly increased hazards of all-cause mortality among CAD cases. Even after controlling for multiple covariates, but in only the primary cohort, rs6788787 conferred significantly improved survival (HR = 0.80, 95% CI = 0.69–0.92, p = 0.002). Post-hoc analyses further stratifying by sex and disease severity revealed replicated effects for rs1462845: even after adjusting for aforementioned covariates and coronary interventional procedures, males with severe burden of CAD had significantly amplified hazards of death with the minor variant of rs1462845 in both cohorts (HR = 1.29, 95% CI = 1.08–1.55, p = 0.00456; replication HR = 1.25, 95% CI = 1.05–1.49, p = 0.013). Kaplan-Meier curves revealed unique cohort-specific genotype effects on survival. Additional analyses demonstrated that the homozygous risk genotype (‘A/A’) fully explained the increased hazard in both cohorts. None of the post-hoc analyses in control subjects were significant for any model. This suggests that genetic effects of rs1462845 on survival are unique to CAD presence. This represents formal, replicated evidence of genetic contribution of rs1462845 to increased risk for all-cause mortality; the contribution is unique to CAD case status and specific to males with severe burden of CAD.


PLOS ONE | 2017

A genome-wide trans-ethnic interaction study links the PIGR-FCAMR locus to coronary atherosclerosis via interactions between genetic variants and residential exposure to traffic.

Cavin K. Ward-Caviness; Lucas M. Neas; Colette Blach; Carol Haynes; Karen LaRocque-Abramson; Elizabeth Grass; Z. Elaine Dowdy; Robert B. Devlin; David Diaz-Sanchez; Wayne E. Cascio; Marie Lynn Miranda; Simon G. Gregory; Svati H. Shah; William E. Kraus; Elizabeth R. Hauser

Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic-related air pollution is a widespread environmental exposure and is associated with multiple cardiovascular outcomes such as coronary atherosclerosis, peripheral arterial disease, and myocardial infarction. Despite the recognition of the importance of both genetic and environmental exposures to the pathogenesis of cardiovascular disease, studies of how these two contributors operate jointly are rare. We performed a genome-wide interaction study (GWIS) to examine gene-traffic exposure interactions associated with coronary atherosclerosis. Using race-stratified cohorts of 538 African-Americans (AA) and 1562 European-Americans (EA) from a cardiac catheterization cohort (CATHGEN), we identify gene-by-traffic exposure interactions associated with the number of significantly diseased coronary vessels as a measure of chronic atherosclerosis. We found five suggestive (P<1x10-5) interactions in the AA GWIS, of which two (rs1856746 and rs2791713) replicated in the EA cohort (P < 0.05). Both SNPs are in the PIGR-FCAMR locus and are eQTLs in lymphocytes. The protein products of both PIGR and FCAMR are implicated in inflammatory processes. In the EA GWIS, there were three suggestive interactions; none of these replicated in the AA GWIS. All three were intergenic; the most significant interaction was in a regulatory region associated with SAMSN1, a gene previously associated with atherosclerosis and B cell activation. In conclusion, we have uncovered several novel genes associated with coronary atherosclerosis in individuals chronically exposed to increased ambient concentrations of traffic air pollution. These genes point towards inflammatory pathways that may modify the effects of air pollution on cardiovascular disease risk.


Heart Surgery Forum | 2015

Genetic variants associated with vein graft stenosis after coronary artery bypass grafting.

Asad A. Shah; Carol Haynes; Damian M. Craig; Jacqueline Sebek; Elizabeth Grass; Karen Abramson; Elizabeth R. Hauser; Simon G. Gregory; William E. Kraus; Peter K. Smith; Svati H. Shah

BACKGROUND Vein graft stenosis after coronary artery bypass grafting (CABG) is common. Identifying genes associated with vein graft stenosis after CABG could reveal novel mechanisms of disease and discriminate patients at risk for graft failure. We hypothesized that genome-wide association would identify these genes. METHODS We performed a genome-wide association study on a subset of patients presenting for cardiac catheterization for concern of ischemic heart disease, who also underwent CABG and subsequent coronary angiography after CABG for clinical indications (n = 521). Cases were defined as individuals with ≥50% stenosis in any vein graft on any cardiac catheterization, and controls were defined as those who did not have vein graft stenosis on any subsequent cardiac catheterization. Multivariable logistic regression was used to assess the association between single nucleotide polymorphisms (SNPs) and vein graft stenosis. RESULTS Sixty-nine percent of patients had vein graft failure after CABG. Seven SNPs were significantly associated with vein graft stenosis, including intronic SNPs in the genes PALLD (Rs6854137, P = 3.77 × 10(-6)), ARID1B (Rs184074, P = 5.97 × 10(-6)), and TMEM123 (Rs11225247, P = 8.25 × 10(-6)); and intergenic SNPs near the genes ABCA13 (Rs10232860, P = 4.54 × 10(-6)), RMI2 (Rs9921338, P = 6.15 × 10(-6)), PRM2 (Rs7198849, P = 7.27 × 10(-6)), and TNFSF4 (Rs17346536, P = 9.33 × 10(-6)). CONCLUSIONS We have identified novel genetic variants that may predispose to risk of vein graft failure after CABG, many within biologically plausible pathways. These polymorphisms merit further investigation, as they could assist in stratifying patients with multi-vessel coronary artery disease, which could lead to alterations in management and revascularization strategy.


Heart Surgery Forum | 2015

Epigenetic Profiling Identifies Novel Genes for Ascending Aortic Aneurysm Formation with Bicuspid Aortic Valves.

Asad A. Shah; Simon G. Gregory; Deidre R. Krupp; Feng S; Dorogi A; Carol Haynes; Elizabeth Grass; Shu S. Lin; Elizabeth R. Hauser; William E. Kraus; Svati H. Shah; Hughes Gc


Atherosclerosis | 2017

Whole blood sequencing reveals circulating microRNA associations with high-risk traits in non-ST-segment elevation acute coronary syndrome

Alice Wang; Lydia Kwee; Elizabeth Grass; Megan L. Neely; Simon G. Gregory; Keith A.A. Fox; Paul W. Armstrong; Harvey D. White; E. Magnus Ohman; Matthew T. Roe; Svati H. Shah; Mark Y. Chan

Collaboration


Dive into the Elizabeth Grass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge