Elizabeth Hemming-Schroeder
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Hemming-Schroeder.
PLOS Neglected Tropical Diseases | 2017
Eugenia Lo; Elizabeth Hemming-Schroeder; Delenasaw Yewhalaw; Jennifer Nguyen; Estifanos Kebede; Endalew Zemene; Sisay Getachew; Kora Tushune; Daibin Zhong; Guofa Zhou; Beyene Petros; Guiyun Yan
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.
Emerging Infectious Diseases | 2017
Eugenia Lo; Kristie Nguyen; Jennifer Nguyen; Elizabeth Hemming-Schroeder; Jiaobao Xu; Harrisone Etemesi; Andrew K. Githeko; Guiyun Yan
In Africa, control programs that target primarily Plasmodium falciparum are inadequate for eliminating malaria. To learn more about prevalence and genetic variability of P. malariae in Africa, we examined blood samples from 663 asymptomatic and 245 symptomatic persons from western Kenya during June–August of 2014 and 2015. P. malariae accounted for 5.3% (35/663) of asymptomatic infections and 3.3% (8/245) of clinical cases. Among asymptomatic persons, 71% (32/45) of P. malariae infections detected by PCR were undetected by microscopy. The low sensitivity of microscopy probably results from the significantly lower parasitemia of P. malariae. Analyses of P. malariae circumsporozoite protein gene sequences revealed high genetic diversity among P. malariae in Africa, but no clear differentiation among geographic populations was observed. Our findings suggest that P. malariae should be included in the malaria elimination strategy in Africa and highlight the need for sensitive and field-applicable methods to identify P. malariae in malaria-endemic areas.
The Journal of Infectious Diseases | 2017
Eugenia Lo; Nancy Lam; Elizabeth Hemming-Schroeder; Jennifer Nguyen; Guofa Zhou; Ming-Chieh Lee; Zhaoqing Yang; Liwang Cui; Guiyun Yan
Background In Myanmar, civil unrest and the establishment of internally displaced person (IDP) settlements along the Myanmar-China border have impacted malaria transmission. Methods Microsatellite markers were used to examine source-sink dynamics for Plasmodium vivax between IDP settlements and surrounding villages in the border region. Genotypic structure and diversity were compared across the 3 years following the establishment of IDP settlements, to infer demographic history. We investigated whether human migration and landscape heterogeneity contributed to P. vivax transmission. Results P. vivax from IDP settlements and local communities consistently exhibited high genetic diversity within populations but low polyclonality within individuals. No apparent genetic structure was observed among populations and years. P. vivax genotypes in China were similar to those in Myanmar, and parasite introduction was unidirectional. Landscape factors, including distance, elevation, and land cover, do not appear to impede parasite gene flow. Conclusions The admixture of P. vivax genotypes suggested that parasite gene flow via human movement contributes to the spread of malaria both locally in Myanmar and across the international border. Our genetic findings highlight the presence of large P. vivax gene reservoirs that can sustain transmission. Thus, it is important to reinforce and improve existing control efforts along border areas.
American Journal of Tropical Medicine and Hygiene | 2018
Elizabeth Hemming-Schroeder; Emuejevuoke Umukoro; Eugenia Lo; Becky Fung; Pedro Tomás-Domingo; Guofa Zhou; Daibin Zhong; Amruta Dixit; Harrysone Atieli; Andrew K. Githeko; Anne Vardo-Zalik; Guiyun Yan
Abstract. Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. Plasmodium falciparum isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (Pfcrt), sulfadoxine–pyrimethamine (SP) (Pfdhfr/Pfdhps), and artemether–lumefantrine (AL) (PfKelch13/Pfmdr1) antimalarials. In addition, household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP “super resistant” alleles Pfdhps 581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No PfKelch13 mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in Pfdhfr/Pfdhps quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent Pfdhfr/Pfdhps mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.
Frontiers in Ecology and Evolution | 2018
Eugenia Lo; Mariangela Bonizzoni; Elizabeth Hemming-Schroeder; Anthony Ford; Daniel A. Janies; Anthony A. James; Yaw Afrane; Harrisone Etemesi; Guofa Zhou; Andrew K. Githeko; Guiyun Yan
Single nucleotide polymorphisms (SNPs) have been shown to be useful in revealing population structure with continental-and regional-scale samples. In epidemiological study, a careful selection of SNPs to track disease spread in local communities would provide an important addition to traditional disease surveillance. This study used SNPs and microsatellites to examine population structure of Plasmodium falciparum at fine- scale in malaria-endemic areas of Western Kenya. A set of high performance (HP) SNPs were selected from a large SNP panel based on BELS ranking, FST values and minor allele frequency criteria. The discriminative power and assignment accuracy of different SNP panels including nonsynonymous SNPs, silent SNPs, previously published barcode SNPs, and the HP SNPs were evaluated together with microsatellites. Among all SNP panels, HP SNPs showed the highest level of differentiation and self-assignment accuracy on average among sites. Clear distinction was observed between the northern and southern P. falciparum samples, whereas samples from the south were least diverged from one another. These results were comparable to those by microsatellites. Nonsynonymous, silent, and barcode SNPs all showed similar levels of genetic variability to one another and weaker structure than the HP SNPs. We described here the procedure of selecting a set of HP SNPs from a large panel of SNPs that resolve population structure of P. falciparum between the northern and southern regions of Western Kenya. This procedure is recommended in future study to screen and select HP SNPs that can trace Plasmodium spread among local communities of finer geographical scales.
Frontiers in Ecology and Evolution | 2018
Elizabeth Hemming-Schroeder; Eugenia Lo; Cynthia Salazar; Sandie Puente; Guiyun Yan
Landscape genetics aims to quantify the effect of landscape on gene flow. Broadly, the approach involves measuring genetic variation, quantifying landscape heterogeneity, and statistically testing the link between both genetic variation and landscape heterogeneity. This approach has been widely used by conservation biologists, for example to identify barriers restricting movement in threatened populations. More recently, landscape genetics has been used to study the epidemiology of infectious diseases, such as chronic wasting disease, raccoon rabies, and malaria. This method can be useful to identifying potential hotspot areas of disease movement for targeted public health interventions and containment of disease and drug resistance. However, vector-borne disease epidemiology is particularly complex, as it is affected by the movement of both the vector and human or vertebrate host. This feature could potentially inhibit the ability to detect the effect of landscape on gene flow, since the ecology of vectors and hosts are likely different and potentially conflicting. Here, we provide a summary of the latest innovations in the field of landscape genetics with a focus on those that could help increase the power to detect landscape effects in vector-borne human disease studies. We also provide a recommended framework for studying vector-borne diseases using a landscape genetics approach. Landscape genetics has the potential to be a powerful tool for the field of vector-borne disease epidemiology, but has so far been underutilized. The provided synthesis of tools and considerations for conducting a landscape genetics study of a vector-borne disease aim to bridge the gap between the two disciplines.
American Journal of Tropical Medicine and Hygiene | 2018
Elizabeth Hemming-Schroeder; Stephanie Strahl; Eugene Yang; Amanda Nguyen; Eugenia Lo; Daibin Zhong; Harrysone Atieli; Andrew K. Githeko; Guiyun Yan
Abstract. Vector control programs, particularly in the form of insecticide-treated bed nets (ITNs), are essential for achieving malaria elimination goals. Recent reports of increasing knockdown resistance (kdr) mutation frequencies for Anopheles arabiensis in Western Kenya heightens the concern on the future effectiveness of ITNs in Kenya. We examined resistance in An. arabiensis populations across Kenya through kdr mutations and World Health Organization–recommended bioassays. We detected two kdr alleles, L1014F and L1014S. Kdr mutations were found in five of the 11 study sites, with mutation frequencies ranging from 3% to 63%. In two Western Kenya populations, the kdr L1014F allele frequency was as high as 10%. The L1014S frequency was highest at Chulaimbo at 55%. Notably, the kdr L1014F mutation was found to be associated with pyrethroid resistance at Port Victoria, but kdr mutations were not significantly associated with resistance at Chulaimbo, which had the highest kdr mutation frequency among all sites. This study demonstrated the emerging pyrethroid resistance in An. arabiensis and that pyrethroid resistance may be related to kdr mutations. Resistance monitoring and management are urgently needed for this species in Kenya where resistance is emerging and its abundance is becoming predominant. Kdr mutations may serve as a biomarker for pyrethroid resistance in An. arabiensis.
BMC Infectious Diseases | 2016
Eugenia Lo; Jennifer Nguyen; Winny Oo; Elizabeth Hemming-Schroeder; Guofa Zhou; Zhaoqing Yang; Liwang Cui; Guiyun Yan
Malaria Journal | 2018
Daibin Zhong; Eugenia Lo; Xiaoming Wang; Delenasaw Yewhalaw; Guofa Zhou; Harrysone Atieli; Andrew K. Githeko; Elizabeth Hemming-Schroeder; Ming-Chieh Lee; Yaw A. Afrane; Guiyun Yan
Infectious Diseases of Poverty | 2018
Hiwot S Taffese; Elizabeth Hemming-Schroeder; Gezahegn Tesfaye; Ming-Chieh Lee; James W. Kazura; Guiyun Yan; Guofa Zhou