Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Ilett is active.

Publication


Featured researches published by Elizabeth Ilett.


Clinical Cancer Research | 2009

Immune-Mediated Antitumor Activity of Reovirus Is Required for Therapy and Is Independent of Direct Viral Oncolysis and Replication

Robin Prestwich; Elizabeth Ilett; Fiona Errington; Rosa Maria Diaz; Lynette Steele; Tim Kottke; Jill Thompson; Feorillo Galivo; Kevin J. Harrington; Hardev Pandha; Peter Selby; Richard G. Vile; Alan Melcher

Purpose: Reovirus is a naturally occurring oncolytic virus in clinical trials. Although tumor infection by reovirus can generate adaptive antitumor immunity, its therapeutic importance versus direct viral oncolysis is undefined. This study addresses the requirement for viral oncolysis and replication, and the relative importance of antitumor immunity and direct oncolysis in therapy. Experimental Design: Nonantigen specific T cells loaded with reovirus were delivered i.v. to C57BL/6 and severe combined immunodeficient mice bearing lymph node and splenic metastases from the murine melanoma, B16ova, with assessment of viral replication, metastatic clearance by tumor colony outgrowth, and immune priming. Human cytotoxic lymphocyte priming assays were done with dendritic cells loaded with Mel888 cells before the addition of reovirus. Results: B16ova was resistant to direct oncolysis in vitro, and failed to support reovirus replication in vitro or in vivo. Nevertheless, reovirus purged lymph node and splenic metastases in C57BL/6 mice and generated antitumor immunity. In contrast, reovirus failed to reduce tumor burden in severe combined immunodeficient mice bearing either B16ova or reovirus-sensitive B16tk metastases. In the human system, reovirus acted solely as an adjuvant when added to dendritic cells already loaded with Mel888, supporting priming of specific antitumor cytotoxic lymphocyte, in the absence of significant direct tumor oncolysis; UV-treated nonreplicating reovirus was similarly immunogenic. Conclusion: The immune response is critical in mediating the efficacy of reovirus, and does not depend upon direct viral oncolysis or replication. The findings are of direct relevance to fulfilling the potential of this novel anticancer agent.


Clinical Cancer Research | 2008

Tumor Infection by Oncolytic Reovirus Primes Adaptive Antitumor Immunity

Robin Prestwich; Fiona Errington; Elizabeth Ilett; Ruth Morgan; Karen Scott; Timothy Kottke; Jill Thompson; Ewan E. Morrison; Kevin J. Harrington; Hardev Pandha; Peter Selby; Richard G. Vile; Alan Melcher

Purpose: Early clinical trials are under way exploring the direct oncolytic potential of reovirus. This study addresses whether tumor infection by reovirus is also able to generate bystander, adaptive antitumor immunity. Experimental Design: Reovirus was delivered intravenously to C57BL/6 mice bearing lymph node metastases from the murine melanoma, B16-tk, with assessment of nodal metastatic clearance, priming of antitumor immunity against the tumor-associated antigen tyrosinase-related protein-2, and cytokine responses. In an in vitro human system, the effect of reovirus infection on the ability of Mel888 melanoma cells to activate and load dendritic cells for cytotoxic lymphocyte (CTL) priming was investigated. Results: In the murine model, a single intravenous dose of reovirus reduced metastatic lymph node burden and induced antitumor immunity (splenocyte response to tyrosinase-related protein-2 and interleukin-12 production in disaggregated lymph nodes). In vitro human assays revealed that uninfected Mel888 cells failed to induce dendritic cell maturation or support priming of an anti-Mel888 CTL response. In contrast, reovirus-infected Mel888 cells (reo-Mel) matured dendritic cells in a reovirus dose-dependent manner. When cultured with autologous peripheral blood lymphocytes, dendritic cells loaded with reo-Mel induced lymphocyte expansion, IFN-γ production, specific anti-Mel888 cell cytotoxicity, and cross-primed CD8+ T cells specific against the human tumor-associated antigen MART-1. Conclusion: Reovirus infection of tumor cells reduces metastatic disease burden and primes antitumor immunity. Future clinical trials should be designed to explore both direct cytotoxic and immunotherapeutic effects of reovirus.


Gene Therapy | 2009

Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity.

Elizabeth Ilett; Robin Prestwich; Timothy Kottke; Fiona Errington; Jill Thompson; Kevin J. Harrington; Hardev Pandha; Matt Coffey; Peter Selby; Richard G. Vile; Alan Melcher

Reovirus is a naturally occurring oncolytic virus currently in early clinical trials. However, the rapid induction of neutralizing antibodies represents a major obstacle to successful systemic delivery. This study addresses, for the first time, the ability of cellular carriers in the form of T cells and dendritic cells (DC) to protect reovirus from systemic neutralization. In addition, the ability of these cellular carriers to manipulate the subsequent balance of anti-viral versus anti-tumour immune response is explored. Reovirus, either neat or loaded onto DC or T cells, was delivered intravenously into reovirus-naive or reovirus-immune C57Bl/6 mice bearing lymph node B16tk melanoma metastases. Three and 10 days after treatment, reovirus delivery, carrier cell trafficking, metastatic clearance and priming of anti-tumour/anti-viral immunity were assessed. In naive mice, reovirus delivered either neat or through cell carriage was detectable in the tumour-draining lymph nodes 3 days after treatment, though complete clearance of metastases was only obtained when the virus was delivered on T cells or mature DC (mDC); neat reovirus or loaded immature DC (iDC) gave only partial early tumour clearance. Furthermore, only T cells carrying reovirus generated anti-tumour immune responses and long-term tumour clearance; reovirus-loaded DC, in contrast, generated only an anti-viral immune response. In reovirus-immune mice, however, the results were different. Neat reovirus was completely ineffective as a therapy, whereas mDC—though not iDC—as well as T cells, effectively delivered reovirus to melanoma in vivo for therapy and anti-tumour immune priming. Moreover, mDC were more effective than T cells over a range of viral loads. These data show that systemically administered neat reovirus is not optimal for therapy, and that DC may be an appropriate vehicle for carriage of significant levels of reovirus to tumours. The pre-existing immune status against the virus is critical in determining the balance between anti-viral and anti-tumour immunity elicited when reovirus is delivered by cell carriage, and the viral dose and mode of delivery, as well as the immune status of patients, may profoundly affect the success of any clinical anti-tumour viral therapy. These findings are therefore of direct translational relevance for the future design of clinical trials.


Nature Medicine | 2011

Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors.

Timothy Kottke; Fiona Errington; Jose S. Pulido; Feorillo Galivo; Jill Thompson; Phonphimon Wongthida; Rosa Maria Diaz; Heung Chong; Elizabeth Ilett; John D. Chester; Hardev Pandha; Kevin J. Harrington; Peter Selby; Alan Melcher; Richard Vile

Effective cancer immunotherapy requires the release of a broad spectrum of tumor antigens in the context of potent immune activation. We show here that a cDNA library of normal tissue, expressed from a highly immunogenic viral platform, cures established tumors of the same histological type from which the cDNA library was derived. Immune escape occurred with suboptimal vaccination, but tumor cells that escaped the immune pressure were readily treated by second-line virus-based immunotherapy. This approach has several major advantages. Use of the cDNA library leads to presentation of a broad repertoire of (undefined) tumor-associated antigens, which reduces emergence of treatment-resistant variants and also permits rational, combined-modality approaches in the clinic. Finally, the viral vectors can be delivered systemically, without the need for tumor targeting, and are amenable to clinical-grade production. Therefore, virus-expressed cDNA libraries represent a novel paradigm for cancer treatment addressing many of the key issues that have undermined the efficacy of immuno- and virotherapy to date.


Nature Biotechnology | 2012

Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma

Jose S. Pulido; Timothy Kottke; Jill Thompson; Feorillo Galivo; Phonphimon Wongthida; Rosa Maria Diaz; Diana Rommelfanger; Elizabeth Ilett; Larry R. Pease; Hardev Pandha; Kevin J. Harrington; Peter Selby; Alan Melcher; Richard G. Vile

Multiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4+ interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library. VSV-expressed cDNA libraries can therefore be used to identify tumor rejection antigens that can cooperate to induce anti-tumor responses. This technology should be applicable to antigen discovery for other cancers, as well as for other diseases in which immune reactivity against more than one target antigen contributes to disease pathology.


Journal of Immunology | 2009

Reciprocal Human Dendritic Cell-Natural Killer Cell Interactions Induce Antitumor Activity Following Tumor Cell Infection by Oncolytic Reovirus

Robin Prestwich; Fiona Errington; Lynette Steele; Elizabeth Ilett; Ruth Morgan; Kevin J. Harrington; Hardev Pandha; Peter Selby; Richard G. Vile; Alan Melcher

Oncolytic virotherapy may mediate antitumor effects via direct oncolysis or immune-mediated tumor regression. Although the ability of oncolytic viruses to generate adaptive antitumor immunity has been characterized, their interactions with the innate immune system are relatively unclear. Using a human in vitro system, this study investigates the innate immunological consequences of reovirus therapy and its potential to activate NK cell-mediated antitumor activity. Dendritic cells (DC) loaded with reovirus-infected human melanoma Mel888 cells (DC-MelReo), but not reovirus-infected tumor cells alone, induced IFN-γ production within the NK cell population upon coculture with PBMC, in a cell-to-cell contact-dependent manner. DC-MelReo secreted the chemokines CCL2, 3, 4, 5, 7, 8, 11, and CXCL10; these culture supernatants induced NK cell chemotaxis. Coculture of DC-MelReo with purified NK cells induced reciprocal contact-dependent phenotypic DC maturation, while DC-MelReo elicited up-regulation of the activation marker CD69 on NK cells, in a partially contact and partially IL-12 dependent manner. Significantly, DC-MelReo induced NK cell cytotoxicity toward tumor cells by a type I IFN dependent mechanism. These data demonstrate that tumor infection by reovirus can act via DC to induce NK cell recruitment, activation, and cytotoxicity, along with reciprocal DC maturation. These findings suggest that reciprocal DC-NK cell interactions, following reovirus therapy, may play an important role in altering the immune milieu of the tumor microenvironment and mediating tumor regression.


Molecular Cancer | 2011

Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming.

Lynette Steele; Fiona Errington; Robin Prestwich; Elizabeth Ilett; Kevin J. Harrington; Hardev Pandha; Matt Coffey; Peter Selby; Richard Vile; Alan Melcher

BackgroundAs well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses.ResultsHere we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM), in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK) cells, dendritic cells (DC) and anti-melanoma cytotoxic T cells (CTL). Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity.ConclusionsThese data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis.


Clinical Cancer Research | 2011

Internalization of Oncolytic Reovirus by Human Dendritic Cell Carriers Protects the Virus from Neutralization

Elizabeth Ilett; Montserrat Bárcena; Fiona Errington-Mais; Stephen Griffin; Kevin J. Harrington; Hardev Pandha; Matt Coffey; Peter Selby; Ronald W. A. L. Limpens; Mieke Mommaas; Rob C. Hoeben; Richard G. Vile; Alan Melcher

Purpose: Dendritic cells (DC) may be the most effective way of delivering oncolytic viruses to patients. Reovirus, a naturally occurring oncolytic virus, is currently undergoing early clinical trials; however, intravenous delivery of the virus is hampered by pre-existing antiviral immunity. Systemic delivery via cell carriage is a novel approach currently under investigation and initial studies have indicated its feasibility by using a variety of cell types and viruses. This study addressed the efficacy of human DC to transport virus in the presence of human neutralizing serum. Experimental Design: Following reovirus-loading, DC or T cells were cocultured with melanoma cells with or without neutralizing serum; the melanoma cells were then analyzed for cell death. Following reovirus loading, cells were examined by electron microscopy to identify mechanisms of delivery. The phagocytic function of reovirus-loaded DC was investigated by using labeled tumor cells and the ability of reovirus-loaded DC to prime T cells was also investigated. Results: In the presence of human neutralizing serum DC, but not T cells, were able to deliver reovirus for melanoma cell killing in vitro. Electron microscopy suggested that DC protected the virus by internalization, whereas with T cells it remained bound to the surface and hence accessible to neutralizing antibodies. Furthermore, DC loaded with reovirus were fully functional with regard to phagocytosis and priming of specific antitumor immune responses. Conclusions: The delivery of reovirus via DC could be a promising new approach offering the possibility of combining systemic viral therapy for metastatic disease with induction of an antitumor immune response. Clin Cancer Res; 17(9); 2767–76. ©2011 AACR.


Expert Opinion on Biological Therapy | 2010

The evolving role of dendritic cells in cancer therapy

Elizabeth Ilett; Rjd Prestwich; Alan Melcher

Importance of the field: Dendritic cells (DC) are a clear choice for use in cancer immunotherapy, and much research has focused on generating DC for clinical use. Although DC therapy has been successful in inducing specific anti-tumour immune responses, these have rarely translated into clinical efficacy. Areas covered in this review: We examine some of the components of generating DC for therapy, including their culture, antigen loading and delivery, and discuss why DC therapy has not yet delivered substantial clinical benefit. We also examine more novel approaches, such as the potential for combination DC-based immunomodulatory strategies. What the reader will gain: Given the highly immunosuppressive tumour environment, many of the approaches to DC vaccination are unlikely to result in effective therapy, as even successfully primed T cells may fail to infiltrate tumours or be anergized after entry. Broader approaches against multiple tumour-associated antigens in the context of overcoming tumour immune suppression are likely to prove more successful. The combination of oncolytic viral therapy with DC vaccines may promote an inflammatory tumour environment, inducing optimal DC activation, T cell priming and effective therapy. Take home message: Evolving DC-based therapeutic strategies addressing multiple components of tumour–immune system interactions may yield substantial benefits for patients.


Science Translational Medicine | 2018

Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade

Adel Samson; Karen Scott; David Taggart; Emma West; Erica B. Wilson; Gerard J. Nuovo; Simon Thomson; Robert Corns; Ryan K. Mathew; Martin J. Fuller; Timothy Kottke; Jill Thompson; Elizabeth Ilett; Julia Cockle; Philip van Hille; Gnanamurthy Sivakumar; Euan S. Polson; Samantha Turnbull; Elizabeth S. Appleton; Gemma Migneco; Ailsa Rose; Matt Coffey; Deborah A. Beirne; Fiona Collinson; Christy Ralph; D. Alan Anthoney; Chris Twelves; Andrew J.S. Furness; Sergio A. Quezada; Heiko Wurdak

Intravenous infusion of oncolytic reovirus in patients leads to infection of brain tumors, infiltration by cytotoxic T cells, and up-regulation of PD-L1. Viruses team up with cancer immunotherapy Immune checkpoint inhibitors have shown great promise for cancer therapy, but they do not treat all cancers, and neither breast nor brain tumors are usually treatable with these drugs. However, Bourgeois-Daigneault et al. discovered a way to address this for breast cancer, and Samson et al. discovered a way to address this for brain tumors. In both cases, the authors found that oncolytic virus treatment given early, before surgical resection, alters the antitumor immune response and potentiates the effects of subsequent treatment with immune checkpoint inhibitors. Although these studies differ in the details of their methods and the immune effects induced by the oncolytic viruses, they indicate the potential of such viruses for enhancing the potential of checkpoint therapy and expanding it to new types of cancer. Immune checkpoint inhibitors, including those targeting programmed cell death protein 1 (PD-1), are reshaping cancer therapeutic strategies. Evidence suggests, however, that tumor response and patient survival are determined by tumor programmed death ligand 1 (PD-L1) expression. We hypothesized that preconditioning of the tumor immune microenvironment using targeted, virus-mediated interferon (IFN) stimulation would up-regulate tumor PD-L1 protein expression and increase cytotoxic T cell infiltration, improving the efficacy of subsequent checkpoint blockade. Oncolytic viruses (OVs) represent a promising form of cancer immunotherapy. For brain tumors, almost all studies to date have used direct intralesional injection of OV, because of the largely untested belief that intravenous administration will not deliver virus to this site. We show, in a window-of-opportunity clinical study, that intravenous infusion of oncolytic human Orthoreovirus (referred to herein as reovirus) leads to infection of tumor cells subsequently resected as part of standard clinical care, both in high-grade glioma and in brain metastases, and increases cytotoxic T cell tumor infiltration relative to patients not treated with virus. We further show that reovirus up-regulates IFN-regulated gene expression, as well as the PD-1/PD-L1 axis in tumors, via an IFN-mediated mechanism. Finally, we show that addition of PD-1 blockade to reovirus enhances systemic therapy in a preclinical glioma model. These results support the development of combined systemic immunovirotherapy strategies for the treatment of both primary and secondary tumors in the brain.

Collaboration


Dive into the Elizabeth Ilett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Selby

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Harrington

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge