Elizabeth J. Klemm
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth J. Klemm.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Britta Mueller; Elizabeth J. Klemm; Eric Spooner; Jasper H. L. Claessen; Hidde L. Ploegh
Membrane and secretory proteins that fail to pass quality control in the endoplasmic reticulum are discharged into the cytosol and degraded by the proteasome. Many of the mammalian components involved in this process remain to be identified. We performed a biochemical search for proteins that interact with SEL1L, a protein that is part of the mammalian HRD1 ligase complex and involved in substrate recognition. SEL1L is crucial for dislocation of Class I major histocompatibility complex heavy chains by the human cytomegalovirus US11 protein. We identified AUP1, UBXD8, UBC6e, and OS9 as functionally important components of this degradation complex in mammalian cells, as confirmed by mutagenesis and dominant negative versions of these proteins.
Nature Genetics | 2015
Vanessa K. Wong; Stephen Baker; Derek Pickard; Julian Parkhill; Andrew J. Page; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; David J. Edwards; Jane Hawkey; Simon R. Harris; Alison E. Mather; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Dafni A. Glinos; Robert F. Breiman; Conall H. Watson; Samuel Kariuki; Melita A. Gordon; Robert S. Heyderman; Chinyere K. Okoro; Jan Jacobs; Octavie Lunguya; W. John Edmunds; Chisomo L. Msefula
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.
Journal of Biological Chemistry | 2011
Elizabeth J. Klemm; Eric Spooner; Hidde L. Ploegh
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.
Journal of Immunology | 2006
Justine D. Mintern; Elizabeth J. Klemm; Markus Wagner; Marie Eve Paquet; Melanie D. Napier; You Me Kim; Ulrich H. Koszinowski; Hidde L. Ploegh
Murine CMV (MCMV), a β-herpesvirus, infects dendritic cells (DC) and impairs their function. The underlying events are poorly described. In this study, we identify MCMV m138 as the viral gene responsible for promoting the rapid disappearance of the costimulatory molecule B7-1 (CD80) from the cell surface of DC. This was unexpected, as m138 was previously identified as fcr-1, a putative virus-encoded FcR. m138 impaired the ability of DC to activate CD8+ T cells. Biochemical analysis and immunocytochemistry showed that m138 targets B7-1 in the secretory pathway and reroutes it to lysosomal associated membrane glycoprotein-1+ compartments. These results show a novel function for m138 in MCMV infection and identify the first viral protein to target B7-1.
Journal of Immunology | 2009
Annette M. McGehee; Stephanie K. Dougan; Elizabeth J. Klemm; Guanghou Shui; Boyoun Park; You-Me Kim; Nicki Watson; Markus R. Wenk; Hidde L. Ploegh; Chih-Chi Andrew Hu
The accumulation of misfolded secreted IgM in the endoplasmic reticulum (ER) of X-box binding protein 1 (XBP-1)-deficient B cells has been held responsible for the inability of such cells to yield plasma cells, through the failure to mount a proper unfolded protein response. LPS-stimulated B cells incapable of secreting IgM still activate the XBP-1 axis normally, as follows: XBP-1 is turned on by cues that trigger differentiation and not in response to accumulation of unfolded IgM, but the impact of XBP-1 deficiency on glycoprotein folding and assembly has not been explored. The lack of XBP-1 compromised neither the formation of functional hen egg lysozyme-specific IgM nor the secretion of free κ-chains. Although XBP-1 deficiency affects the synthesis of some ER chaperones, including protein disulfide isomerase, their steady state levels do not drop below the threshold required for proper assembly and maturation of the Igα/Igβ heterodimer and MHC molecules. Intracellular transport and surface display of integral membrane proteins are unaffected by XBP-1 deficiency. Given the fact that we failed to observe any defects in folding of a variety of glycoproteins, we looked for other means to explain the requirement for XBP-1 in plasma cell development. We observed significantly reduced levels of phosphatidylcholine, sphingomyelin, and phosphatidylinositol in total membranes of XBP-1-deficient B cells, and reduced ER content. Terminal N-linked glycosylation of IgM and class I MHC was altered in these cells. XBP-1 hence has important roles beyond folding proteins in the ER.
Molecular Microbiology | 2013
Timothy T. Perkins; Mark R. Davies; Elizabeth J. Klemm; Gary Rowley; Thomas Wileman; Keith D. James; Thomas M. Keane; Duncan J. Maskell; Jay C. D. Hinton; Gordon Dougan; Robert A. Kingsley
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.
Nature Communications | 2016
Vanessa K. Wong; Stephen Baker; Thomas Richard Connor; Derek Pickard; Andrew J. Page; Jayshree Dave; Niamh Murphy; Richard Holliman; Armine Sefton; Michael Millar; Zoe A. Dyson; Gordon Dougan; Kathryn E. Holt; Julian Parkhill; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; Simon Le Hello; Jane Hawkey; David J. Edwards; Simon R. Harris; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Robert F. Breiman; Conall H. Watson
The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations.
Nature microbiology | 2016
Elizabeth J. Klemm; Effrossyni Gkrania-Klotsas; James Hadfield; Jessica L. Forbester; Simon R. Harris; Christine Hale; Jennifer N. Heath; Thomas Wileman; Simon Clare; Leanne Kane; David Goulding; Thomas D. Otto; Sally Kay; Rainer Doffinger; Fiona J. Cooke; Andrew J. Carmichael; Andrew M. L. Lever; Julian Parkhill; Calman A. MacLennan; Dinakantha Kumararatne; Gordon Dougan; Robert A. Kingsley
Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts(1). Host adaptation can potentially progress to host restriction, where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin-12 β1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harboured a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts1. Host adaptation can potentially progress to host restriction, where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin-12 β1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harboured a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.
PLOS Neglected Tropical Diseases | 2016
Carine Makendi; Andrew J. Page; Brendan W. Wren; Tu Le Thi Phuong; Simon Clare; Christine Hale; David Goulding; Elizabeth J. Klemm; Derek Pickard; Chinyere K. Okoro; Martin Hunt; Corinne N. Thompson; Nguyen Phu Huong Lan; Nhu Tran Do Hoang; Guy Thwaites; Simon Le Hello; Anne Brisabois; F X Weill; Stephen Baker; Gordon Dougan
Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.
Mbio | 2018
Elizabeth J. Klemm; Sadia Shakoor; Andrew J. Page; Farah Naz Qamar; Kim Judge; Dania K. Saeed; Vanessa K. Wong; Timothy J. Dallman; Satheesh Nair; Stephen Baker; Ghazala Shaheen; Shahida Qureshi; Mohammad Tahir Yousafzai; Muhammad Khalid Saleem; Zahra Hasan; Gordon Dougan; Rumina Hasan
ABSTRACT Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan. The XDR S. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S. Typhi observed here adds urgency to the need for typhoid prevention measures. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan. The XDR S. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S. Typhi observed here adds urgency to the need for typhoid prevention measures.