Elizabeth J. Stewart
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth J. Stewart.
Langmuir | 2013
Elizabeth J. Stewart; Ashley E. Satorius; John G. Younger; Michael J. Solomon
Cellular clustering and separation of Staphylococcus epidermidis surface adherent biofilms were found to depend significantly on both antibiotic and environmental stress present during growth under steady flow. Image analysis techniques common to colloidal science were applied to image volumes acquired with high-resolution confocal laser scanning microscopy to extract spatial positions of individual bacteria in volumes of size ~30 × 30 × 15 μm(3). The local number density, cluster distribution, and radial distribution function were determined at each condition by analyzing the statistics of the bacterial spatial positions. Environmental stressors of high osmotic pressure (776 mM NaCl) and sublethal antibiotic dose (1.9 μg/mL vancomycin) decreased the average bacterial local number density 10-fold. Device-associated bacterial biofilms are frequently exposed to these environmental and antibiotic stressors while undergoing flow in the bloodstream. Characteristic density phenotypes associated with low, medium, and high local number densities were identified in unstressed S. epidermidis biofilms, while stressed biofilms contained medium- and low-density phenotypes. All biofilms exhibited clustering at length scales commensurate with cell division (~1.0 μm). However, density phenotypes differed in cellular connectivity at the scale of ~6 μm. On this scale, nearly all cells in the high- and medium-density phenotypes were connected into a single cluster with a structure characteristic of a densely packed disordered fluid. However, in the low-density phenotype, the number of clusters was greater, equal to 4% of the total number of cells, and structures were fractal in nature with d(f) =1.7 ± 0.1. The work advances the understanding of biofilm growth, informs the development of predictive models of transport and mechanical properties of biofilms, and provides a method for quantifying the kinetics of bacterial surface colonization as well as biofilm fracture and fragmentation.
Scientific Reports | 2015
Elizabeth J. Stewart; Mahesh Ganesan; John G. Younger; Michael J. Solomon
We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.
Biomacromolecules | 2013
Mahesh Ganesan; Elizabeth J. Stewart; Jacob Szafranski; Ashley E. Satorius; John G. Younger; Michael J. Solomon
Biofilms are microbial communities that are characterized by the presence of a viscoelastic extracellular polymeric substance (EPS). Studies have shown that polysaccharides, along with proteins and DNA, are a major constituent of the EPS and play a dominant role in mediating its microstructure and rheological properties. Here, we investigate the possibility of entanglements and associative complexes in solutions of extracellular polysaccharide intercellular adhesin (PIA) extracted from Staphylococcus epidermidis biofilms. We report that the weight average molar mass and radius of gyration of PIA isolates are 2.01×10(5)±1200 g/mol and 29.2±1.2 nm, respectively. The coil overlap concentration, c*, was thus determined to be (32±4)×10(-4) g/mL. Measurements of the in situ concentration of PIA (cPIA,biofilm) was found to be (10±2)×10(-4) g/mL.Thus, cPIA,biofilm<c* and the amount of PIA in the biofilm is too low to cause polymer chain entanglements. In the pH range 3.0-5.5, PIA was found to both self-associate and to form complexes with bovine serum albumin (BSA). By static light scattering, both self-association and complex formation with 0.5% (w/v) BSA were found to occur at PIA concentrations of 0.30×10(-4) g/mL and greater, which is about 30 times lower than the measured cPIA,biofilm. These results suggest that the microscopic origin of EPS viscoelasticity is unlikely to be due to polysaccharide entanglements. Furthermore, the onset of self-association and protein complexation of PIA occurs at concentrations far lower than the native PIA concentration in biofilms. This finding therefore suggests a critical role for those two association mechanisms in mediating biofilm viscoelasticity.
Scientific Reports | 2016
Nathaniel R. Twarog; Elizabeth J. Stewart; Courtney Vowell Hammill; Anang A. Shelat
With combination therapies becoming increasingly vital to understanding and combatting disease, a reliable method for analyzing combined dose response is essential. The importance of combination studies both in basic and translational research necessitates a method that can be applied to a wide range of experimental and analytical conditions. However, despite increasing demand, no such unified method has materialized. Here we introduce the Bivariate Response to Additive Interacting Doses (BRAID) model, a response surface model that combines the simplicity and intuitiveness needed for basic interaction classifications with the versatility and depth needed to analyze a combined response in the context of pharmacological and toxicological constraints. We evaluate the model in a series of simulated combination experiments, a public combination dataset, and several experiments on Ewing’s Sarcoma. The resulting interaction classifications are more consistent than those produced by traditional index methods, and show a strong relationship between compound mechanisms and nature of interaction. Furthermore, analysis of fitted response surfaces in the context of pharmacological constraints yields a more concrete prediction of combination efficacy that better agrees with in vivo evaluations.
Shock | 2015
Rachael A. Sturtevant; Prannda Sharma; Leonid Pavlovsky; Elizabeth J. Stewart; Michael J. Solomon; John G. Younger
ABSTRACT Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms.
Applied and Environmental Microbiology | 2017
Elizabeth J. Stewart; David E. Payne; Tianhui Maria Ma; J. Scott VanEpps; Blaise R. Boles; John G. Younger; Michael J. Solomon
ABSTRACT The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis. Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections.
Journal of Computational Physics | 2016
Jay A. Stotsky; Jason F. Hammond; Leonid Pavlovsky; Elizabeth J. Stewart; John G. Younger; Michael J. Solomon; David M. Bortz
The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I (19) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in 14,15, variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field.We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in 26 in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.
Scientific Reports | 2018
Nathaniel R. Twarog; Elizabeth J. Stewart; Courtney Vowell Hammill; Anang A. Shelat
This corrects the article DOI: 10.1038/srep25523.
Applied and Environmental Microbiology | 2011
Stephen P. Dzul; Margaret M. Thornton; Danial N. Hohne; Elizabeth J. Stewart; Aayush A. Shah; David M. Bortz; Michael J. Solomon; John G. Younger
arXiv: Numerical Analysis | 2013
Jason F. Hammond; Elizabeth J. Stewart; John G. Younger; Michael J. Solomon; David M. Bortz