Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Kolos is active.

Publication


Featured researches published by Elizabeth Kolos.


Knee | 2017

Variability in static alignment and kinematics for kinematically aligned TKA

Willy Theodore; J. Twiggs; Elizabeth Kolos; Justin Roe; Brett Fritsch; David M. Dickison; David Liu; Lucy Salmon; B. Miles; Stephen M. Howell

BACKGROUND Total knee arthroplasty (TKA) significantly improves pain and restores a considerable degree of function. However, improvements are needed to increase patient satisfaction and restore kinematics to allow more physically demanding activities that active patients consider important. The aim of our study was to compare the alignment and motion of kinematically and mechanically aligned TKAs. METHODS A patient specific musculoskeletal computer simulation was used to compare the tibio-femoral and patello-femoral kinematics between mechanically aligned and kinematically aligned TKA in 20 patients. RESULTS When kinematically aligned, femoral components on average resulted in more valgus alignment to the mechanical axis and internally rotated to surgical transepicondylar axis whereas tibia component on average resulted in more varus alignment to the mechanical axis and internally rotated to tibial AP rotational axis. With kinematic alignment, tibio-femoral motion displayed greater tibial external rotation and lateral femoral flexion facet centre (FFC) translation with knee flexion than mechanical aligned TKA. At the patellofemoral joint, patella lateral shift of kinematically aligned TKA plateaued after 20 to 30° flexion while in mechanically aligned TKA it decreased continuously through the whole range of motion. CONCLUSIONS Kinematic alignment resulted in greater variation than mechanical alignment for all tibio-femoral and patello-femoral motion. Kinematic alignment places TKA components patient specific alignment which depends on the preoperative state of the knee resulting in greater variation in kinematics. The use of computational models has the potential to predict which alignment based on native alignment, kinematic or mechanical, could improve knee function for patients undergoing TKA.


Materials | 2015

Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

Elizabeth Kolos; Andrew J. Ruys

In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF) as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.


Key Engineering Materials | 2005

Biomimetic Hydroxyapatite Micro-Tube Tissue Scaffold

Elizabeth Kolos; Andrew J. Ruys; Ramin Rohanizadeh; Meloni Muir; Greg J. Roger

The aim of this study was to fabricate a micro-tube scaffold using a biomimetic method (immersion in Simulated Body Fluid, SBF) to coat apatite on cotton fibres. The cotton fibres were first pre-treated using a phosphorylation technique and then apatite crystals were deposited on the fibres by immersing in SBF. Micro-tubes were then formed by burning out the cotton fibres at various temperatures between 950-1250°C. The scaffolds were fabricated by compaction of the micro-tubes in a mould. The compacted micro-tubes were then sintered at various temperatures between 900-1200°C. The biocompatibility and the effects of the surface morphology of scaffolds on cell coverage and proliferation were determined using osteoblast cell culture. The results showed that these scaddolds were biocompatible and able to support cell growth. Future studies include animal studies for biomimetic tissue scaffold as a bone filler substitute material.


Medical Engineering & Physics | 2018

Measurement of physical activity in the pre- and early post-operative period after total knee arthroplasty for Osteoarthritis using a Fitbit Flex device

J. Twiggs; Lucy Salmon; Elizabeth Kolos; Emily Bogue; B. Miles; Justin Roe

Total knee arthroplasty (TKA) is a standard treatment for patients with end stage knee Osteoarthritis (OA) to reduce pain and restore function. The aim of this study was to assess pre- and early post-operative physical activity (PA) with Fitbit Flex devices for patients with OA undergoing TKA and determine any benchmarks for expected post-operative activity. Significant correlations of pre-operative step count, post-operative step count, Body Mass Index (BMI) and Short Form 12 Physical Component Summaries (SF-12 PCS) were found. Mean step counts varied by 3,203 steps per day between obese and healthy weight patients, and 3,786 steps per day between those with higher and lower SF-12 PCS scores, suggesting the need for benchmarks for recovery that vary by patient pre-operative factors. A backwards stepwise regression model developed to provide patient specific step count predictions at 6 weeks had an R2 of 0.754, providing a robust patient specific benchmark for post-operative recovery, while population means from BMI and SF-12 subgroups provide a clinically practical alternative.


Materials | 2015

Processing and Properties of Zirconia-Toughened Alumina Prepared by Gelcasting

Salam Abbas; Saeed Maleksaeedi; Elizabeth Kolos; Andrew J. Ruys

Zirconia-toughened alumina (ZTA) using yttria-stabilised zirconia is a good option for ceramic-ceramic bearing couples for hip joint replacement. Gelcasting is a colloidal processing technique capable of producing complex products with a range of dimensions and materials by a relatively low-cost production process. Using gelcasting, ZTA samples were prepared, optimising the stages of fabrication, including slurry preparation with varying solid loadings, moulding and de-moulding, drying and sintering. Density, hardness, fracture toughness, flexural strength and grain size were observed relative to slurry solid loadings between 58 and 62 vol. %, as well as sintering temperatures of 1550 °C and 1650 °C. Optimal conditions found were plastic mould, 4000 g/mol PEG with 30 vol. % concentration, 61% solid loading and Ts = 1550 °C. ZTA samples of high density (maximum 99.1%), high hardness (maximum 1902 HV), high fracture toughness (maximum 5.43 MPa m1/2) and high flexural strength (maximum 618 MPa) were successfully prepared by gelcasting and pressureless sintering.


Key Engineering Materials | 2003

A Novel Biomimetic Approach for the Manufacture of Hydroxyapatite Fibres

Elizabeth Kolos; Andrew J. Ruys; Greg J. Roger

Hydroxyapatie (HA) is a highly biocompatible ceramic as it i chemically similar to bone mineral. It is thought that the bioactive nature of HA, allowing bone on-growth and resorption of a synthetic material in the body, could lead to applications of HA fibre s in tissue scaffolds and internal bandages, and possibly as composites. There are many methods of preparing HA fibres including spinning, extrusion, pyrolysis, precipitation and coating methods. U sing a biomimetic method, combustible fibres were coated with a calcium phosphate apatit e. The biomimetic method is a two-step approach of nucleation and crystal growth following biomi neralization, a natural process of calcification. Phosphorylation was employed as a pretrea tment for the cotton surface as phosphorylation is the process by which proteins within the material ar e activated. Further studies include a burnout of the combustible fibre thus producing a biomimetically coated HA fibre.


Medical Engineering & Physics | 2015

Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure

B. Miles; Elizabeth Kolos; William L. Walter; Richard Appleyard; Angela Shi; Qing Li; Andrew J. Ruys

Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF.


Bio-medical Materials and Engineering | 2015

A plasma-sprayed titanium proximal coating reduces the risk of periprosthetic femoral fracture in cementless hip arthroplasty.

B. Miles; William L. Walter; Elizabeth Kolos; Timothy S. Waters; Richard Appleyard; R. Mark Gillies; Shane Donohoo; Andrew J. Ruys

BACKGROUND The design of femoral component used in total hip arthroplasty is known to influence the incidence of periprosthetic femoral fractures (PFFs) in cementless hip arthroplasty. OBJECTIVE This study was undertaken to determine if 2 potential changes to an existing ABG II-standard cementless implant - addition of a roughened titanium plasma-sprayed proximal coating (ABG II-plasma) and lack of medial scales (ABG II-NMS) could decrease the risk of PFF in the intraoperative and early postoperative periods. METHODS Six pairs of human cadaveric femurs were harvested and divided into 2 groups, each receiving either of the altered implants and ABG II-standard (control). Each implant was tested in a biomechanical setup in a single-legged stance orientation. Surface strains were measured in intact femurs, during implant insertion, cyclic loading of the bone with the implant, and loading to failure. Strains with the ABG II-standard and the altered implants were compared. FINDINGS ABG II-plasma showed better load-bearing capacity, with an average 42% greater failure load than that of ABG II-standard. The cortical hoop, axial and mean strains ABG II-plasma were less than those of ABG II-standard, demonstrating decreased tensile behaviour and better load transfer to the proximal femur. The final residual hoop strains in ABG II-plasma were closer to those of intact bone as compared to the standard stem. No differences in strains were observed between the standard stem and ABG II-NMS. CONCLUSION The increased load-bearing capacity and decreased proximal surface strains on femurs implanted with ABG II-plasma stem should reduce the risks of intraoperative and early postoperative PFF.


Materials | 2015

Cellular response to doping of high porosity foamed alumina with Ca, P, Mg, and Si

Edwin Soh; Elizabeth Kolos; Andrew J. Ruys

Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.


Journal of Arthroplasty | 2018

Patient Variation Limits Use of Fixed References for Femoral Rotation Component Alignment in Total Knee Arthroplasty

J. Twiggs; David M. Dickison; Elizabeth Kolos; Caitlin E. Wilcox; Justin Roe; Brett Fritsch; Stephen J. McMahon; B. Miles; Andrew J. Ruys

BACKGROUND Optimal rotational alignment of the femoral component is a common goal during total knee arthroplasty. The posterior condylar axis (PCA) is thought to be the most reproducible reference in surgery, while the transepicondylar axis (TEA) seems to better approximate the native kinematic flexion axis. This study sought to determine if rules based on patient gender or coronal alignment could allow reliable reproduction of the TEA from the PCA. METHODS Three-dimensional models based on preoperative computed tomography were made representing a patients arthritic knee joint. The landmarks were defined and angular relationships determined. RESULTS The population group of 726 patients contained large anatomic variation. When applying the standard reference rule of 3° external rotation from the PCA, 36.9% of patients would have a rotational target greater than ±2° from their TEA. When applying the mean external rotation of the TEA from the PCA (1.85°) from this population, this proportion dropped to 26.0% of patients. The use of statistically significant gender and coronal alignment relationships to define the femoral rotation did not reduce the proportion of patients in ±2° error. CONCLUSION This study shows that gender and coronal alignment relationships to the TEA to PCA angle are not clinically significant as a quarter of patients would still have a target for rotation greater than ±2° from the TEA using these relationships. Superior tools for orienting rotational cuts directly to the TEA in surgery or preoperative identification of relevant patient-specific angles might capture the proportion of patients for whom standard reference angles are not appropriate.

Collaboration


Dive into the Elizabeth Kolos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Miles

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Li

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge