Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth M. Leaf is active.

Publication


Featured researches published by Elizabeth M. Leaf.


Circulation Research | 2009

Smooth Muscle Cells Give Rise to Osteochondrogenic Precursors and Chondrocytes in Calcifying Arteries

Mei Y. Speer; Hsueh Ying Yang; Thea Brabb; Elizabeth M. Leaf; Amy Look; Wei Ling Lin; Andrew D. Frutkin; David A. Dichek; Cecilia M. Giachelli

Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. To develop appropriate prevention and/or therapeutic strategies for vascular calcification, it is important to understand the origins of the cells that participate in this process. In this report, we used the SM22-Cre recombinase and Rosa26-LacZ alleles to genetically trace cells derived from smooth muscle. We found that smooth muscle cells (SMCs) gave rise to osteochondrogenic precursor- and chondrocyte-like cells in calcified blood vessels of matrix Gla protein deficient (MGP−/−) mice. This lineage reprogramming of SMCs occurred before calcium deposition and was associated with an early onset of Runx2/Cbfa1 expression and the downregulation of myocardin and Msx2. There was no change in the constitutive expression of Sox9 or bone morphogenetic protein 2. Osterix, Wnt3a, and Wnt7a mRNAs were not detected in either calcified MGP−/− or noncalcified wild-type (MGP+/+) vessels. Finally, mechanistic studies in vitro suggest that Erk signaling might be required for SMC transdifferentiation under calcifying conditions. These results provide strong support for the hypothesis that adult SMCs can transdifferentiate and that SMC transdifferentiation is an important process driving vascular calcification and the appearance of skeletal elements in calcified vascular lesions.


Kidney International | 2009

Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin

Mohga El-Abbadi; Ashwini S. Pai; Elizabeth M. Leaf; Hsueh-Ying Yang; Bryan A. Bartley; Krystle K. Quan; Carly M. Ingalls; Hung Wei Liao; Cecilia M. Giachelli

Arterial medial calcification is a major complication in patients with chronic kidney disease and is a strong predictor of cardiovascular and all-cause mortality. We sought to determine the role of dietary phosphorus and the severity of uremia on vascular calcification in calcification-prone DBA/2 mice. Severe and moderate uremia was induced by renal ablation of varying magnitudes. Extensive arterial-medial calcification developed only when the uremic mice were placed on a high-phosphate diet. Arterial calcification in the severely uremic mice fed a high-phosphate diet was significantly associated with hyperphosphatemia. Moderately uremic mice on this diet were not hyperphosphatemic but had a significant rise in their serum levels of fibroblast growth factor 23 (FGF-23) and osteopontin that significantly correlated with arterial medial calcification. Although there was widespread arterial medial calcification, there was no histological evidence of atherosclerosis. At early stages of calcification, the osteochondrogenic markers Runx2 and osteopontin were upregulated, but the smooth muscle cell marker SM22alpha decreased in medial cells, as did the number of smooth muscle cells in extensively calcified regions. These findings suggest that phosphate loading and the severity of uremia play critical roles in controlling arterial medial calcification in mice. Further, FGF-23 and osteopontin may be markers and/or inducers of this process.


Kidney International | 2012

Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet

Wei Ling Lau; Elizabeth M. Leaf; Ming Chang Hu; Marc M. Takeno; Makoto Kuro-o; Orson W. Moe; Cecilia M. Giachelli

Vascular calcification is common in chronic kidney disease, where cardiovascular mortality remains the leading cause of death. Patients with kidney disease are often prescribed vitamin D receptor agonists (VDRAs) that confer a survival benefit, but the underlying mechanisms remain unclear. Here we tested two VDRAs in a mouse chronic kidney disease model where dietary phosphate loading induced aortic medial calcification. Mice were given intraperitoneal calcitriol or paricalcitol three times per week for three weeks. These treatments were associated with half of the aortic calcification compared to no therapy, and there was no difference between the two agents. In the setting of a high phosphate diet, serum parathyroid hormone and calcium levels were not significantly altered by treatment. VDRA therapy was associated with increased serum and urine klotho levels, increased phosphaturia, correction of hyperphosphatemia, and lowering of serum fibroblast growth factor-23. There was no effect on elastin remodeling or inflammation, however, the expression of the anti-calcification factor, osteopontin, in aortic medial cells was increased. Paricalcitol upregulated osteopontin secretion from mouse vascular smooth muscle cells in culture. Thus, klotho and osteopontin were upregulated by VDRA therapy in chronic kidney disease, independent of changes in serum parathyroid hormone and calcium.


American Journal of Pathology | 2011

Elastin Degradation and Vascular Smooth Muscle Cell Phenotype Change Precede Cell Loss and Arterial Medial Calcification in a Uremic Mouse Model of Chronic Kidney Disease

Ashwini S. Pai; Elizabeth M. Leaf; Mohga El-Abbadi; Cecilia M. Giachelli

Arterial medial calcification (AMC), a hallmark of vascular disease in uremic patients, is highly correlated with serum phosphate levels and cardiovascular mortality. To determine the mechanisms of AMC, mice were made uremic by partial right-side renal ablation (week 0), followed by left-side nephrectomy at week 2. At 3 weeks, mice were switched to a high-phosphate diet, and various parameters of disease progression were examined over time. Serum phosphate, calcium, and fibroblast growth factor 23 (FGF-23) were up-regulated as early as week 4. Whereas serum phosphate and calcium levels declined to normal by 10 weeks, FGF-23 levels remained elevated through 16 weeks, consistent with an increased phosphate load. Elastin turnover and vascular smooth muscle cell (VSMC) phenotype change were early events, detected by week 4 and before AMC. Both AMC and VSMC loss were significantly elevated by week 8. Matrix metalloprotease 2 (MMP-2) and cathepsin S were present at baseline and were significantly elevated at weeks 8 and 12. In contrast, MMP-9 was not up-regulated until week 12. These findings over time suggest that VSMC phenotype change and VSMC loss (early phosphate-dependent events) may be necessary and sufficient to promote AMC in uremic mice fed a high-phosphate diet, whereas elastin degradation might be necessary but is not sufficient to induce AMC (because elastin degradation occurred also in uremic mice on a normal-phosphate diet, but they did not develop AMC).


Cardiovascular Research | 2012

Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo genetic fate mapping study

Veena Naik; Elizabeth M. Leaf; Jie Hong Hu; Hsueh Ying Yang; Ngoc B. Nguyen; Cecilia M. Giachelli; Mei Y. Speer

AIMS Vascular cartilaginous metaplasia and calcification are common in patients with atherosclerosis. However, sources of cells contributing to the development of this complication are currently unknown. In this study, we ascertained the origin of cells that give rise to cartilaginous and bony elements in atherosclerotic vessels. METHODS AND RESULTS We utilized genetic fate mapping strategies to trace cells of smooth muscle (SM) origin via SM22α-Cre recombinase and Rosa26-LacZ Cre reporter alleles. In animals expressing both transgenes, co-existence within a single cell of β-galactosidase [marking cells originally derived from SM cells (SMCs)] with osteochondrogenic (Runx2/Cbfa1) or chondrocytic (Sox9, type II collagen) markers, along with simultaneous loss of SM lineage proteins, provides a strong evidence supporting reprogramming of SMCs towards osteochondrogenic or chondrocytic differentiation. Using this technique, we found that vascular SMCs accounted for ~80% of Runx2/Cbfa1-positive cells and almost all of type II collagen-positive cells (~98%) in atherosclerotic vessels of LDLr-/- and ApoE-/- mice. We also assessed contribution from bone marrow (BM)-derived cells via analysing vessels dissected from chimerical ApoE-/- mice transplanted with green fluorescence protein-expressing BM. Marrow-derived cells were found to account for ~20% of Runx2/Cbfa1-positive cells in calcified atherosclerotic vessels of ApoE-/- mice. CONCLUSION Our results are the first to definitively identify cell sources attributable to atherosclerotic intimal calcification. SMCs were found to be a major contributor that reprogrammed its lineage towards osteochondrogenesis. Marrow-derived cells from the circulation also contributed significantly to the early osteochondrogenic differentiation in atherosclerotic vessels.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2.

Matthew H. Crouthamel; Wei Ling Lau; Elizabeth M. Leaf; Nicholas W. Chavkin; Mary C. Wallingford; Danielle F. Peterson; Xianwu Li; Yonggang Liu; Michael T. Chin; Moshe Levi; Cecilia M. Giachelli

Objective—Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human vascular smooth muscle cells (VSMCs), but its importance in vascular calcification in vivo and the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease and the potential compensatory role of PiT-2 using in vitro knockdown and overexpression strategies. Approach and Results—Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1&Dgr;sm). PiT-1 mRNA levels were undetectable, whereas PiT-2 mRNA levels were increased 2-fold in the vascular aortic media of PiT-1&Dgr;sm compared with PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1&Dgr;sm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1&Dgr;sm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared with PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1&Dgr;sm VSMCs. Furthermore, overexpression of PiT-2 restored these parameters in human PiT-1–deficient VSMCs. Conclusions—PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 seem to serve redundant roles in phosphate-induced calcification of VSMCs.


American Journal of Pathology | 2015

Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice

Mu En Lin; Theodore M. Chen; Elizabeth M. Leaf; Mei Y. Speer; Cecilia M. Giachelli

Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2(f/f)) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22-recombinase transgenic allele mice (Runx2(ΔSM)) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2(f/f) mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D-treated Runx2(ΔSM) mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2(f/f) SMCs calcified to a much greater extent than those derived from Runx2(ΔSM) mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients.


Brain Pathology | 2017

SLC20A2 Deficiency in Mice Leads to Elevated Phosphate Levels in Cerbrospinal Fluid and Glymphatic Pathway‐Associated Arteriolar Calcification, and Recapitulates Human Idiopathic Basal Ganglia Calcification

Mary C. Wallingford; Jia Jun Chia; Elizabeth M. Leaf; Suhaib Borgeia; Nicholas W. Chavkin; Chenphop Sawangmake; Ken Marro; Timothy C. Cox; Mei Y. Speer; Cecilia M. Giachelli

Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium‐dependent phosphate co‐transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/− mice developed age‐dependent basal ganglia calcification that formed in glymphatic pathway‐associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate‐induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate‐induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway‐associated arteriolar calcification.


Kidney International | 2016

Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification

Neil J. Paloian; Elizabeth M. Leaf; Cecilia M. Giachelli

Pathologic calcification is a significant cause of increased morbidity and mortality in patients with chronic kidney disease. The precise mechanisms of ectopic calcification are not fully elucidated, but it is known to be caused by an imbalance of procalcific and anticalcific factors. In the chronic kidney disease population, an elevated phosphate burden is both highly prevalent and a known risk factor for ectopic calcification. Here we tested whether osteopontin, an inhibitor of calcification, protects against high phosphate load-induced nephrocalcinosis and vascular calcification. Osteopontin knockout mice were placed on a high phosphate diet for 11 weeks. Osteopontin deficiency together with phosphate overload caused uremia, nephrocalcinosis characterized by substantial renal tubular and interstitial calcium deposition, and marked vascular calcification when compared with control mice. Although the osteopontin-deficient mice did not exhibit hypercalcemia or hyperphosphatemia, they did show abnormalities in the mineral metabolism hormone fibroblast growth factor-23. Thus, endogenous osteopontin plays a critical role in the prevention of phosphate-induced nephrocalcinosis and vascular calcification in response to high phosphate load. A better understanding of osteopontins role in phosphate-induced calcification will hopefully lead to better biomarkers and therapies for this disease, especially in patients with chronic kidney disease and other at-risk populations.


Kidney International | 2009

Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, FGF-23 and osteopontin

Mohga El-Abbadi; Ashwini S. Pai; Elizabeth M. Leaf; Hsueh-Ying Yang; Bryan A. Bartley; Krystle K. Quan; Carly M. Ingalls; Hung Wei Liao; Cecilia M. Giachelli

Arterial medial calcification is a major complication in patients with chronic kidney disease and is a strong predictor of cardiovascular and all-cause mortality. We sought to determine the role of dietary phosphorus and the severity of uremia on vascular calcification in calcification-prone DBA/2 mice. Severe and moderate uremia was induced by renal ablation of varying magnitudes. Extensive arterial-medial calcification developed only when the uremic mice were placed on a high-phosphate diet. Arterial calcification in the severely uremic mice fed a high-phosphate diet was significantly associated with hyperphosphatemia. Moderately uremic mice on this diet were not hyperphosphatemic but had a significant rise in their serum levels of fibroblast growth factor 23 (FGF-23) and osteopontin that significantly correlated with arterial medial calcification. Although there was widespread arterial medial calcification, there was no histological evidence of atherosclerosis. At early stages of calcification, the osteochondrogenic markers Runx2 and osteopontin were upregulated, but the smooth muscle cell marker SM22alpha decreased in medial cells, as did the number of smooth muscle cells in extensively calcified regions. These findings suggest that phosphate loading and the severity of uremia play critical roles in controlling arterial medial calcification in mice. Further, FGF-23 and osteopontin may be markers and/or inducers of this process.

Collaboration


Dive into the Elizabeth M. Leaf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Y. Speer

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ashwini S. Pai

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung Wei Liao

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge