Mei Y. Speer
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mei Y. Speer.
Circulation Research | 2009
Mei Y. Speer; Hsueh Ying Yang; Thea Brabb; Elizabeth M. Leaf; Amy Look; Wei Ling Lin; Andrew D. Frutkin; David A. Dichek; Cecilia M. Giachelli
Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. To develop appropriate prevention and/or therapeutic strategies for vascular calcification, it is important to understand the origins of the cells that participate in this process. In this report, we used the SM22-Cre recombinase and Rosa26-LacZ alleles to genetically trace cells derived from smooth muscle. We found that smooth muscle cells (SMCs) gave rise to osteochondrogenic precursor- and chondrocyte-like cells in calcified blood vessels of matrix Gla protein deficient (MGP−/−) mice. This lineage reprogramming of SMCs occurred before calcium deposition and was associated with an early onset of Runx2/Cbfa1 expression and the downregulation of myocardin and Msx2. There was no change in the constitutive expression of Sox9 or bone morphogenetic protein 2. Osterix, Wnt3a, and Wnt7a mRNAs were not detected in either calcified MGP−/− or noncalcified wild-type (MGP+/+) vessels. Finally, mechanistic studies in vitro suggest that Erk signaling might be required for SMC transdifferentiation under calcifying conditions. These results provide strong support for the hypothesis that adult SMCs can transdifferentiate and that SMC transdifferentiation is an important process driving vascular calcification and the appearance of skeletal elements in calcified vascular lesions.
American Journal of Pathology | 2002
Susan Steitz; Mei Y. Speer; Marc D. McKee; Lucy Liaw; Manuela Almeida; Hsueh Yang; Cecilia M. Giachelli
Ectopic calcification, the abnormal calcification of soft tissues, can have severe clinical consequences especially when localized to vital organs such as heart valves, arteries, and kidneys. Recent observations suggest that ectopic calcification, like bone biomineralization, is an actively regulated process. These observations have led a search for molecular determinants of ectopic calcification. A candidate molecule is osteopontin (OPN), a secreted phosphoprotein invariantly associated with both normal and pathological mineral deposits. In the present study, OPN was found to be a natural inhibitor of ectopic calcification in vivo. Glutaraldehyde-fixed aortic valve leaflets showed accelerated and fourfold to fivefold greater calcification after subcutaneous implantation into OPN-null mice compared to wild-type mice. In vitro and in vivo studies suggest that OPN not only inhibits mineral deposition but also actively promotes its dissolution by physically blocking hydroxyapatite crystal growth and inducing expression of carbonic anhydrase II in monocytic cells and promoting acidification of the extracellular milieu. These findings suggest a novel mechanism of OPN action and potential therapeutic approach to the treatment of ectopic calcification.
Journal of Experimental Medicine | 2002
Mei Y. Speer; Marc D. McKee; Robert E. Guldberg; Lucy Liaw; Hsueh Ying Yang; Elyse Tung; Gerard Karsenty; Cecilia M. Giachelli
Osteopontin (OPN) is abundantly expressed in human calcified arteries. To examine the role of OPN in vascular calcification, OPN mutant mice were crossed with matrix Gla protein (MGP) mutant mice. Mice deficient in MGP alone (MGP−/− OPN+/+) showed calcification of their arteries as early as 2 weeks (wk) after birth (0.33 ± 0.01 mmol/g dry weight), and the expression of OPN in the calcified arteries was greatly up-regulated compared with MGP wild-types. OPN accumulated adjacent to the mineral and colocalized to surrounding cells in the calcified media. Cells synthesizing OPN lacked smooth muscle (SM) lineage markers, SM α-actin and SM22α. However, most of them were not macrophages. Importantly, mice deficient in both MGP and OPN had twice as much arterial calcification as MGP−/− OPN+/+ at 2 wk, and over 3 times as much at 4 wk, suggesting an inhibitory effect of OPN in vascular calcification. Moreover, these mice died significantly earlier (4.4 ± 0.2 wk) than MGP−/− OPN+/+ counterparts (6.6 ± 1.0 wk). The cause of death in these animals was found to be vascular rupture followed by hemorrhage, most likely due to enhanced calcification. These studies are the first to demonstrate a role for OPN as an inducible inhibitor of ectopic calcification in vivo.
Circulation Research | 2005
Cecilia M. Giachelli; Mei Y. Speer; Xianwu Li; Rupak M. Rajachar; Hsueh Yang
Vascular calcification is prevalent in aging as well as a number of pathological conditions, and it is now recognized as a strong predictor of cardiovascular events in the general population as well as diabetic and end-stage renal disease patients. Vascular calcification is a highly regulated process involving inductive and inhibitory mechanisms. This article focuses on two molecules, phosphate and osteopontin, that have been implicated in the induction or inhibition of vascular calcification, respectively. Elevated phosphate is of interest because hyperphosphatemia is recognized as a major nonconventional risk factor for cardiovascular disease mortality in end-stage renal disease patients. Studies to date suggest that elevated phosphate stimulates smooth muscle cell phenotypic transition and mineralization via the activity of a sodium-dependent phosphate cotransporter. Osteopontin, however, appears to block vascular calcification most likely by preventing calcium phosphate crystal growth and inducing cellular mineral resorption.
Cardiovascular Pathology | 2004
Mei Y. Speer; Cecilia M. Giachelli
Vascular calcification is highly correlated with cardiovascular disease (CVD) and is a significant predictor of cardiovascular events, especially in high risk patients such as the end stage renal disease (ESRD) population. Vascular calcification can lead to serious problems including valve stenosis, decreased vascular compliance, calciphylaxis, and even sudden death. However, the contribution of vascular calcification to progression of atherosclerosis is unknown and needs more study. Biochemical, histological, and genetic studies indicate that vascular calcification is actively regulated and involves both positive and negative modulators. Several nonmutually exclusive theories to account for vascular calcification based on current studies are discussed.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Marcello Rattazzi; Brian J. Bennett; Florian Bea; Elizabeth A. Kirk; Jerry Ricks; Mei Y. Speer; Stephen M. Schwartz; Cecilia M. Giachelli; Michael E. Rosenfeld
Objective—Advanced atherosclerotic lesions in the innominate arteries of chow-fed apolipoprotein E–deficient mice become highly calcified with 100% frequency by 75 weeks of age. The time course, cell types, and mechanism(s) associated with calcification were investigated. Methods and Results—The deposition of hydroxyapatite is preceded by the formation of fibro-fatty nodules that are populated by cells that morphologically resemble chondrocytes. These cells are spatially associated with small deposits of hydroxyapatite in animals between 45 and 60 weeks of age. Immunocytochemical analyses with antibodies recognizing known chondrocyte proteins show that these cells express the same proteins as chondrocytes within developing bone. Histological and electron microscopic analyses of lesions from animals between 45 and 60 weeks of age show that the chondrocyte-like cells are surrounded by dense connective tissue that stains positive for type II collagen. Nanocrystals of hydroxyapatite can be seen within matrix vesicles derived from the chondrocyte-like cells. In mice between 75 and 104 weeks of age, the lesions have significantly reduced cellularity and contain large calcium deposits. The few remaining chondrocyte-like cells are located adjacent to or within the large areas of calcification. Conclusions—Calcification of advanced lesions in chow-fed apolipoprotein E–deficient mice occurs reproducibly in mice between 45 and 75 weeks of age. The deposition of hydroxyapatite is mediated by chondrocytes, which suggests that the mechanism of calcification may in part recapitulate the process of endochondral bone formation.
Journal of Cellular Biochemistry | 2010
Mei Y. Speer; Xianwu Li; Pranoti G. Hiremath; Cecilia M. Giachelli
Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. Smooth muscle cells (SMCs) may play an important role in vascular cartilaginous metaplasia and calcification via reprogramming to the osteochondrogenic state. To study whether SM lineage reprogramming and thus matrix calcification is reversible and what the necessary regulatory factors are to reverse this process, we used cells isolated from calcifying arterial medias of 4‐week‐old matrix Gla protein knockout mice (MGP−/−SMCs). We found that vascular cells with an osteochondrogenic phenotype regained SMC properties (positive for SM22α and SM α‐actin) and down‐regulated osteochondrogenic gene expression (Runx2/Cbfa1 and osteopontin) upon culture in medium that favors SMC differentiation. Over time, the MGP−/− SMCs no longer expressed osteochondrogenic proteins and became indistinguishable from wild‐type SMCs. Moreover, phenotypic switch of the restored SMCs to the osteochondrogenic state was re‐induced by the pro‐calcific factor, inorganic phosphate. Finally, loss‐ and gain‐of‐function studies of myocardin, a SM‐specific transcription co‐activator, and Runx2/Cbfa1, an osteochondrogenic transcription factor, revealed that upregulation of Runx2/Cbfa1, but not loss of myocardin, played a critical role in phosphate‐induced SMC lineage reprogramming and calcification. These results are the first to demonstrate reversibility of vascular SMCs in the osteochondrogenic state in response to local environmental cues, and that myocardin‐enforced SMC lineage allocation was not sufficient to block vascular calcification. On the other hand, Runx2/Cbfa1 was found to be a decisive factor identified in the process. J. Cell. Biochem. 110: 935–947, 2010.
Cardiovascular Research | 2012
Veena Naik; Elizabeth M. Leaf; Jie Hong Hu; Hsueh Ying Yang; Ngoc B. Nguyen; Cecilia M. Giachelli; Mei Y. Speer
AIMS Vascular cartilaginous metaplasia and calcification are common in patients with atherosclerosis. However, sources of cells contributing to the development of this complication are currently unknown. In this study, we ascertained the origin of cells that give rise to cartilaginous and bony elements in atherosclerotic vessels. METHODS AND RESULTS We utilized genetic fate mapping strategies to trace cells of smooth muscle (SM) origin via SM22α-Cre recombinase and Rosa26-LacZ Cre reporter alleles. In animals expressing both transgenes, co-existence within a single cell of β-galactosidase [marking cells originally derived from SM cells (SMCs)] with osteochondrogenic (Runx2/Cbfa1) or chondrocytic (Sox9, type II collagen) markers, along with simultaneous loss of SM lineage proteins, provides a strong evidence supporting reprogramming of SMCs towards osteochondrogenic or chondrocytic differentiation. Using this technique, we found that vascular SMCs accounted for ~80% of Runx2/Cbfa1-positive cells and almost all of type II collagen-positive cells (~98%) in atherosclerotic vessels of LDLr-/- and ApoE-/- mice. We also assessed contribution from bone marrow (BM)-derived cells via analysing vessels dissected from chimerical ApoE-/- mice transplanted with green fluorescence protein-expressing BM. Marrow-derived cells were found to account for ~20% of Runx2/Cbfa1-positive cells in calcified atherosclerotic vessels of ApoE-/- mice. CONCLUSION Our results are the first to definitively identify cell sources attributable to atherosclerotic intimal calcification. SMCs were found to be a major contributor that reprogrammed its lineage towards osteochondrogenesis. Marrow-derived cells from the circulation also contributed significantly to the early osteochondrogenic differentiation in atherosclerotic vessels.
Genesis | 2009
Maria H. Festing; Mei Y. Speer; Hsueh Ying Yang; Cecilia M. Giachelli
Accelerated vascular calcification occurs in several human diseases including diabetes and chronic kidney disease (CKD). In patients with CKD, vascular calcification is highly correlated with elevated serum phosphate levels. In vitro, elevated concentrations of phosphate induced vascular smooth muscle cell matrix mineralization, and the inorganic phosphate transporter‐1 (PiT‐1), was shown to be required. To determine the in vivo role of PiT‐1, mouse conditional and null alleles were generated. Here we show that the conditional allele, PiT‐1flox, which has loxP sites flanking exons 3 and 4, is homozygous viable. Cre‐mediated recombination resulted in a null allele that is homozygous lethal. Examination of early embryonic development revealed that the PiT‐1Δe3,4/Δe3,4 embryos displayed anemia, a defect in yolk sac vasculature, and arrested growth. Thus, conditional and null PiT‐1 mouse alleles have been successfully generated and PiT‐1 has a necessary, nonredundant role in embryonic development. genesis 47:858–863, 2009.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Xianwu Li; Mei Y. Speer; Hsueh Yang; Jamie Bergen; Cecilia M. Giachelli
Objectives—Vascular calcification is highly correlated with morbidity and mortality, and it is often associated with inflammation. Vitamin D may regulate vascular calcification and has been associated with cardiovascular survival benefits. Methods and Results—We developed a macrophage/smooth muscle cell (SMC) coculture system and examined the effects of vitamin D receptor activators (VDRA), calcitriol and paricalcitol, on SMC matrix calcification. We found that treatment of SMC alone with VDRA had little effect on phosphate-induced SMC calcification in vitro. However, coculture with macrophages promoted SMC calcification, and this was strikingly inhibited by VDRA treatment. Several VDRA-induced genes, including bone morphogenetic protein-2 (BMP2), tumor necrosis factor-&agr;, and osteopontin, were identified as candidate paracrine factors for the protective effect of VDRA. Of these, osteopontin was further investigated and found to contribute significantly to the inhibitory actions of VDRA on calcification in macrophage/SMC cocultures. Conclusion—The ability of VDRA to direct a switch in the paracrine phenotype of macrophages from procalcific to anticalcific may contribute to their observed cardiovascular survival benefits.