Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Purdom is active.

Publication


Featured researches published by Elizabeth Purdom.


Cancer Cell | 2010

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

Roel G.W. Verhaak; Katherine A. Hoadley; Elizabeth Purdom; Victoria Wang; Yuan Qi; Matthew D. Wilkerson; C. Ryan Miller; Li Ding; Todd R. Golub; Jill P. Mesirov; Gabriele Alexe; Michael S. Lawrence; Michael O'Kelly; Pablo Tamayo; Barbara A. Weir; Stacey Gabriel; Wendy Winckler; Supriya Gupta; Lakshmi Jakkula; Heidi S. Feiler; J. Graeme Hodgson; C. David James; Jann N. Sarkaria; Cameron Brennan; Ari Kahn; Paul T. Spellman; Richard Wilson; Terence P. Speed; Joe W. Gray; Matthew Meyerson

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.


BMC Bioinformatics | 2010

Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments

James H. Bullard; Elizabeth Purdom; Kasper D. Hansen; Sandrine Dudoit

BackgroundHigh-throughput sequencing technologies, such as the Illumina Genome Analyzer, are powerful new tools for investigating a wide range of biological and medical questions. Statistical and computational methods are key for drawing meaningful and accurate conclusions from the massive and complex datasets generated by the sequencers. We provide a detailed evaluation of statistical methods for normalization and differential expression (DE) analysis of Illumina transcriptome sequencing (mRNA-Seq) data.ResultsWe compare statistical methods for detecting genes that are significantly DE between two types of biological samples and find that there are substantial differences in how the test statistics handle low-count genes. We evaluate how DE results are affected by features of the sequencing platform, such as, varying gene lengths, base-calling calibration method (with and without phi X control lane), and flow-cell/library preparation effects. We investigate the impact of the read count normalization method on DE results and show that the standard approach of scaling by total lane counts (e.g., RPKM) can bias estimates of DE. We propose more general quantile-based normalization procedures and demonstrate an improvement in DE detection.ConclusionsOur results have significant practical and methodological implications for the design and analysis of mRNA-Seq experiments. They highlight the importance of appropriate statistical methods for normalization and DE inference, to account for features of the sequencing platform that could impact the accuracy of results. They also reveal the need for further research in the development of statistical and computational methods for mRNA-Seq.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Subtype and pathway specific responses to anticancer compounds in breast cancer

Laura M. Heiser; Anguraj Sadanandam; Wen-Lin Kuo; Stephen Charles Benz; Theodore C. Goldstein; Sam Ng; William J. Gibb; Nicholas Wang; Safiyyah Ziyad; Frances Tong; Nora Bayani; Zhi Hu; Jessica Billig; Andrea Dueregger; Sophia Lewis; Lakshmi Jakkula; James E. Korkola; Steffen Durinck; Francois Pepin; Yinghui Guan; Elizabeth Purdom; Pierre Neuvial; Henrik Bengtsson; Kenneth W. Wood; Peter G. Smith; Lyubomir T. Vassilev; Bryan T. Hennessy; Joel Greshock; Kurtis E. Bachman; Mary Ann Hardwicke

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Cancer Discovery | 2011

Temporal Dissection of Tumorigenesis in Primary Cancers

Steffen Durinck; Christine Ho; Nicholas Wang; Wilson Liao; Lakshmi Jakkula; Eric A. Collisson; Jennifer Pons; Sai Wing Chan; Ernest T. Lam; Catherine Chu; Kyung-Hee Park; Sungwoo Hong; Joe S Hur; Nam Huh; Isaac M. Neuhaus; Siegrid S. Yu; Roy C. Grekin; Theodora M. Mauro; James E. Cleaver; Pui-Yan Kwok; Philip E. LeBoit; Gad Getz; Kristian Cibulskis; Haiyan Huang; Elizabeth Purdom; Jian Li; Lars Bolund; Sarah T. Arron; Joe W. Gray; Paul T. Spellman

Timely intervention for cancer requires knowledge of its earliest genetic aberrations. Sequencing of tumors and their metastases reveals numerous abnormalities occurring late in progression. A means to temporally order aberrations in a single cancer, rather than inferring them from serially acquired samples, would define changes preceding even clinically evident disease. We integrate DNA sequence and copy number information to reconstruct the order of abnormalities as individual tumors evolve for 2 separate cancer types. We detect vast, unreported expansion of simple mutations sharply demarcated by recombinative loss of the second copy of TP53 in cutaneous squamous cell carcinomas (cSCC) and serous ovarian adenocarcinomas, in the former surpassing 50 mutations per megabase. In cSCCs, we also report diverse secondary mutations in known and novel oncogenic pathways, illustrating how such expanded mutagenesis directly promotes malignant progression. These results reframe paradigms in which TP53 mutation is required later, to bypass senescence induced by driver oncogenes.


Bioinformatics | 2008

FIRMA: a method for detection of alternative splicing from exon array data

Elizabeth Purdom; Ken M. Simpson; Mark Robinson; John G. Conboy; Anna Lapuk; Terence P. Speed

Motivation: Analyses of EST data show that alternative splicing is much more widespread than once thought. The advent of exon and tiling microarrays means that researchers now have the capacity to experimentally measure alternative splicing on a genome wide level. New methods are needed to analyze the data from these arrays. Results: We present a method, finding isoforms using robust multichip analysis (FIRMA), for detecting differential alternative splicing in exon array data. FIRMA has been developed for Affymetrix exon arrays, but could in principle be extended to other exon arrays, tiling arrays or splice junction arrays. We have evaluated the method using simulated data, and have also applied it to two datasets: a panel of 11 human tissues and a set of 10 pairs of matched normal and tumor colon tissue. FIRMA is able to detect exons in several genes confirmed by reverse transcriptase PCR. Availability: R code implementing our methods is contributed to the package aroma.affymetrix. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Molecular Cancer Research | 2010

Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer

Anna Lapuk; Henry Marr; Lakshmi Jakkula; Helder Pedro; Sanchita Bhattacharya; Elizabeth Purdom; Zhi Hu; Ken M. Simpson; Lior Pachter; Steffen Durinck; Nicholas Wang; Bahram Parvin; Gerald Fontenay; Terence P. Speed; James C. Garbe; Martha R. Stampfer; Hovig Bayandorian; Shannon Dorton; Tyson A. Clark; Anthony C. Schweitzer; Andrew J. Wyrobek; Heidi S. Feiler; Paul T. Spellman; John G. Conboy; Joe W. Gray

Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype–specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues. Mol Cancer Res; 8(7); 961–74. ©2010 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination

J. Zachary Sanborn; Jong-Suk Chung; Elizabeth Purdom; Nicholas Wang; Hojabr Kakavand; James S. Wilmott; Timothy M Butler; John F. Thompson; Graham J. Mann; Lauren E. Haydu; Robyn P. M. Saw; Roger S. Lo; Eric A. Collisson; Joe S Hur; Paul T. Spellman; James E. Cleaver; Joe W. Gray; Nam Huh; Rajmohan Murali; Richard A. Scolyer; Boris C. Bastian; Raymond J. Cho

Significance Subpopulations of cells in a primary melanoma sometimes disseminate and establish metastases, which usually cause mortality. By sequencing tumor samples from patients with metastatic melanoma never subjected to targeted therapies, we were able to trace the genetic evolution of cells in the primary that seed metastases. We show that distinct cells in the primary depart multiple times in parallel to seed metastases, often after evolving from a common, parental cell subpopulation. Intriguingly, we also determine that single metastases can be founded by more than one cell population found in the primary cancer. These mechanisms show how profound genetic diversity arises naturally among multiple metastases, driving growth and drug resistance, but also indicate that certain mutations may distinguish cells destined to metastasize. Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized in parallel to different anatomic sites, rather than sequentially from one site to the next. In five of these six patients, the metastasizing cells had themselves arisen from a common parental subpopulation in the primary, indicating that the ability to establish metastases is a late-evolving trait. Interestingly, we discovered that individual metastases were sometimes founded by multiple cell populations of the primary that were genetically distinct. Such establishment of metastases by multiple tumor subpopulations could help explain why identical resistance variants are identified in different sites after initial response to systemic therapy. One primary tumor harbored two subclones with different oncogenic mutations in CTNNB1, which were both propagated to the same metastasis, raising the possibility that activation of wingless-type mouse mammary tumor virus integration site (WNT) signaling may be involved, as has been suggested by experimental models.


Cell Reports | 2014

Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes

Christina L. Zheng; Nicholas Wang; Jong-Suk Chung; Homayoun Moslehi; J. Zachary Sanborn; Joseph S. Hur; Eric A. Collisson; Swapna Vemula; Agne Naujokas; Kami E. Chiotti; Jeffrey B. Cheng; Hiva Fassihi; Andrew J. Blumberg; Celeste V. Bailey; Gary M. Fudem; Frederick G. Mihm; Bari B. Cunningham; Isaac M. Neuhaus; Wilson Liao; Dennis H. Oh; James E. Cleaver; Philip E. LeBoit; Joseph F. Costello; Alan R. Lehmann; Joe W. Gray; Paul T. Spellman; Sarah T. Arron; Nam Huh; Elizabeth Purdom; Raymond J. Cho

Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.


Cancer Research | 2004

Microarray Analysis Reveals Differences in Gene Expression of Circulating CD8+ T Cells in Melanoma Patients and Healthy Donors

Tong Xu; Chen-Tsen Shu; Elizabeth Purdom; Demi Dang; Diane Ilsley; Yaqian Guo; Jeffrey S. Weber; Susan Holmes; Peter P. Lee

Circulating T cells from many cancer patients are known to be dysfunctional and undergo spontaneous apoptosis. We used microarray technology to determine whether gene expression differences exist in T cells from melanoma patients versus healthy subjects, which may underlie these abnormalities. To maximize the resolution of our data, we sort purified CD8+ subsets and amplified the extracted RNA for microarray analysis. These analyses show subtle but statistically significant expression differences for 10 genes in T cells from melanoma patients versus healthy controls, which were additionally confirmed by quantitative real-time PCR analysis. Whereas none of these genes are members of the classical apoptosis pathways, several may be linked to apoptosis. To additionally investigate the significance of these 10 genes, we combined them into a classifier and found that they provide a much better discrimination between melanoma and healthy T cells as compared with a classifier built uniquely with classical apoptosis-related genes. These results suggest the possible engagement of an alternative apoptosis pathway in circulating T cells from cancer patients.


The Annals of Applied Statistics | 2011

Analysis of a data matrix and a graph: Metagenomic data and the phylogenetic tree

Elizabeth Purdom

In biological experiments researchers often have information in the form of a graph that supplements observed numerical data. Incorporating the knowledge contained in these graphs into an analysis of the numerical data is an important and nontrivial task. We look at the example of metagenomic data---data from a genomic survey of the abundance of different species of bacteria in a sample. Here, the graph of interest is a phylogenetic tree depicting the interspecies relationships among the bacteria species. We illustrate that analysis of the data in a nonstandard inner-product space effectively uses this additional graphical information and produces more meaningful results.

Collaboration


Dive into the Elizabeth Purdom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence P. Speed

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric A. Collisson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lakshmi Jakkula

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Cho

University of California

View shared research outputs
Top Co-Authors

Avatar

Diya Das

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge