Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth R. Sharlow is active.

Publication


Featured researches published by Elizabeth R. Sharlow.


Nature | 2010

Chemical genetics of Plasmodium falciparum

W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Journal of Biological Chemistry | 2008

Potent and Selective Disruption of Protein Kinase D Functionality by a Benzoxoloazepinolone

Elizabeth R. Sharlow; Karthik V. Giridhar; Courtney R. LaValle; Jun Chen; Stephanie Leimgruber; Rebecca Barrett; Karla Bravo-Altamirano; Peter Wipf; John S. Lazo; Q. Jane Wang

Protein kinase D (PKD) is a novel family of serine/threonine kinases targeted by the second messenger diacylglycerol. It has been implicated in many important cellular processes and pathological conditions. However, further analysis of PKD in these processes is severely hampered by the lack of a PKD-specific inhibitor that can be readily applied to cells and in animal models. We now report the discovery of the first potent and selective cell-active small molecule inhibitor for PKD, benzoxoloazepinolone (CID755673). This inhibitor was identified from the National Institutes of Health small molecule repository library of 196,173 compounds using a human PKD1 (PKCμ)-based fluorescence polarization high throughput screening assay. CID755673 suppressed half of the PKD1 enzyme activity at 182 nm and exhibited selective PKD1 inhibition when compared with AKT, polo-like kinase 1 (PLK1), CDK activating kinase (CAK), CAMKIIα, and three different PKC isoforms. Moreover, it was not competitive with ATP for enzyme inhibition. In cell-based assays, CID755673 blocked phorbol ester-induced endogenous PKD1 activation in LNCaP cells in a concentration-dependent manner. Functionally, CID755673 inhibited the known biological actions of PKD1 including phorbol ester-induced class IIa histone deacetylase 5 nuclear exclusion, vesicular stomatitis virus glycoprotein transport from the Golgi to the plasma membrane, and the ilimaquinone-induced Golgi fragmentation. Moreover, CID755673 inhibited prostate cancer cell proliferation, cell migration, and invasion. In summary, our findings indicate that CID755673 is a potent and selective PKD1 inhibitor with valuable pharmacological and cell biological potential.


Biochimica et Biophysica Acta | 2010

Protein kinase D as a potential new target for cancer therapy.

Courtney R. LaValle; Kara M. George; Elizabeth R. Sharlow; John S. Lazo; Peter Wipf; Q. Jane Wang

Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD. This review focuses on the potential of PKD as a chemotherapeutic target in cancer treatment and highlights important recent advances in the development of PKD inhibitors.


BMC Chemical Biology | 2010

Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility

Courtney R. LaValle; Karla Bravo-Altamirano; Karthik V. Giridhar; Jun Chen; Elizabeth R. Sharlow; John S. Lazo; Peter Wipf; Q. Jane Wang

Background Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with potency in the upper nanomolar range and high selectivity for PKD. In an effort to further enhance its selectivity and potency for potential in vivo application, small molecule analogs of CID755673 were generated by modifying both the core structure and side-chains. Results After initial activity screening, five analogs with equal or greater potencies as CID755673 were chosen for further analysis: kb-NB142-70, kb-NB165-09, kb-NB165-31, kb-NB165-92, and kb-NB184-02. Our data showed that modifications to the aromatic core structure in particular significantly increased potency while retaining high specificity for PKD. When tested in prostate cancer cells, all compounds inhibited PMA-induced autophosphorylation of PKD1, with kb-NB142-70 being most active. Importantly, these analogs caused a dramatic arrest in cell proliferation accompanying elevated cytotoxicity when applied to prostate cancer cells. Cell migration and invasion were also inhibited by these analogs with varying potencies that correlated to their cellular activity. Conclusions Throughout the battery of experiments, the compounds kb-NB142-70 and kb-NB165-09 emerged as the most potent and specific analogs in vitro and in cells. These compounds are undergoing further testing for their effectiveness as pharmacological tools for dissecting PKD function and as potential anti-cancer agents in the treatment of prostate cancer.


Clinical Cancer Research | 2007

A Phase I Pharmacokinetic and Pharmacodynamic Study of PX-12, a Novel Inhibitor of Thioredoxin-1, in Patients with Advanced Solid Tumors

Ramesh K. Ramanathan; D. Lynn Kirkpatrick; Chandra P. Belani; David M. Friedland; Sylvan B. Green; H-H. Sherry Chow; Catherine Cordova; Steven P. Stratton; Elizabeth R. Sharlow; Amanda F. Baker; Tomislav Dragovich

Purpose: Thioredoxin-1 (Trx-1) is a cellular redox protein that promotes tumor growth, inhibits apoptosis, and up-regulates hypoxia-inducible factor-1α and vascular endothelial growth factor. Objectives of this study were to determine safety, tolerability, pharmacodynamics, and pharmacokinetics of PX-12, a small-molecule inhibitor of Trx-1. Experimental Design: Thirty-eight patients with advanced solid tumors received PX-12 at doses of 9 to 300 mg/m2, as a 1- or 3-h i.v. infusion on days 1 to 5, repeated every 3 weeks. Results: At the 300 mg/m2 dose level, one patient experienced a reversible episode of pneumonitis during the first cycle, and a second patient developed pneumonitis after the second cycle. Doses up to 226 mg/m2 were well tolerated, and grade 3/4 events were uncommon (<3% of patients). The limiting factor on this dosing schedule was pungent odor caused by expired drug metabolite, 2-butanethiol. The best response was stable disease in seven patients (126-332 days). Whereas PX-12 was not detectable following the infusion, the Cmax of its inactive metabolite, 2-mercaptoimidazole, increased linearly with dose. PX-12 treatment lowered plasma Trx-1 concentrations in a dose-dependent manner. Conclusions: PX-12, the first Trx-1 inhibitor to enter clinical trials, was tolerated up to a dose of 226 mg/m2 by a 3-h infusion. Based on pharmacodynamic and pharmacokinetic data, a trial of prolonged infusion schedule of PX-12 has been initiated.


Annual Review of Pharmacology and Toxicology | 2016

Drugging Undruggable Molecular Cancer Targets

John S. Lazo; Elizabeth R. Sharlow

Cancer, more than any other human disease, now has a surfeit of potential molecular targets poised for therapeutic exploitation. Currently, a number of attractive and validated cancer targets remain outside of the reach of pharmacological regulation. Some have been described as undruggable, at least by traditional strategies. In this article, we outline the basis for the undruggable moniker, propose a reclassification of these targets as undrugged, and highlight three general classes of this imposing group as exemplars with some attendant strategies currently being explored to reclassify them. Expanding the spectrum of disease-relevant targets to pharmacological manipulation is central to reducing cancer morbidity and mortality.


PLOS Neglected Tropical Diseases | 2009

Identification of potent chemotypes targeting Leishmania major using a high-throughput, low-stringency, computationally enhanced, small molecule screen.

Elizabeth R. Sharlow; David Close; Tongying Shun; Stephanie Leimgruber; Robyn B. Reed; Gabriela Mustata; Peter Wipf; Jacob D. Johnson; Michael T. O'Neil; Max Grogl; Alan J. Magill; John S. Lazo

Patients with clinical manifestations of leishmaniasis, including cutaneous leishmaniasis, have limited treatment options, and existing therapies frequently have significant untoward liabilities. Rapid expansion in the diversity of available cutaneous leishmanicidal chemotypes is the initial step in finding alternative efficacious treatments. To this end, we combined a low-stringency Leishmania major promastigote growth inhibition assay with a structural computational filtering algorithm. After a rigorous assay validation process, we interrogated ∼200,000 unique compounds for L. major promastigote growth inhibition. Using iterative computational filtering of the compounds exhibiting >50% inhibition, we identified 553 structural clusters and 640 compound singletons. Secondary confirmation assays yielded 93 compounds with EC50s ≤ 1 µM, with none of the identified chemotypes being structurally similar to known leishmanicidals and most having favorable in silico predicted bioavailability characteristics. The leishmanicidal activity of a representative subset of 15 chemotypes was confirmed in two independent assay formats, and L. major parasite specificity was demonstrated by assaying against a panel of human cell lines. Thirteen chemotypes inhibited the growth of a L. major axenic amastigote-like population. Murine in vivo efficacy studies using one of the new chemotypes document inhibition of footpad lesion development. These results authenticate that low stringency, large-scale compound screening combined with computational structure filtering can rapidly expand the chemotypes targeting in vitro and in vivo Leishmania growth and viability.


Journal of Biomolecular Screening | 2011

Identifying Actives from HTS Data Sets: Practical Approaches for the Selection of an Appropriate HTS Data-Processing Method and Quality Control Review

Tong Ying Shun; John S. Lazo; Elizabeth R. Sharlow; Paul A. Johnston

High-throughput screening (HTS) has achieved a dominant role in drug discovery over the past 2 decades. The goal of HTS is to identify active compounds (hits) by screening large numbers of diverse chemical compounds against selected targets and/or cellular phenotypes. The HTS process consists of multiple automated steps involving compound handling, liquid transfers, and assay signal capture, all of which unavoidably contribute to systematic variation in the screening data. The challenge is to distinguish biologically active compounds from assay variability. Traditional plate controls-based and non-controls-based statistical methods have been widely used for HTS data processing and active identification by both the pharmaceutical industry and academic sectors. More recently, improved robust statistical methods have been introduced, reducing the impact of systematic row/column effects in HTS data. To apply such robust methods effectively and properly, we need to understand their necessity and functionality. Data from 6 HTS case histories are presented to illustrate that robust statistical methods may sometimes be misleading and can result in more, rather than less, false positives or false negatives. In practice, no single method is the best hit detection method for every HTS data set. However, to aid the selection of the most appropriate HTS data-processing and active identification methods, the authors developed a 3-step statistical decision methodology. Step 1 is to determine the most appropriate HTS data-processing method and establish criteria for quality control review and active identification from 3-day assay signal window and DMSO validation tests. Step 2 is to perform a multilevel statistical and graphical review of the screening data to exclude data that fall outside the quality control criteria. Step 3 is to apply the established active criterion to the quality-assured data to identify the active compounds.


PLOS Neglected Tropical Diseases | 2010

A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity

Elizabeth R. Sharlow; Todd Lyda; Heidi Dodson; Gabriela Mustata; Meredith Morris; Stephanie Leimgruber; Kuo Hsiung Lee; Yoshiki Kashiwada; David Close; John S. Lazo; James C. Morris

Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.


ACS Chemical Biology | 2014

Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity.

Elizabeth R. Sharlow; Stephanie Leimgruber; Samantha Murray; Ana Lira; Richard J. Sciotti; Mark Hickman; Thomas H. Hudson; Susan E. Leed; Diana P. Caridha; Amy M. Barrios; David Close; Max Grogl; John S. Lazo

Cutaneous leishmaniasis remains ignored in therapeutic drug discovery programs worldwide. This is mainly because cutaneous leishmaniasis is frequently a disease of impoverished populations in countries where funds are limited for research and patient care. However, the health burden of individuals in endemic areas mandates readily available, effective, and safe treatments. Of the existing cutaneous leishmaniasis therapeutics, many are growth inhibitory to Leishmania parasites, potentially creating dormant parasite reservoirs that can be activated when host immunity is compromised, enabling the reemergence of cutaneous leishmaniasis lesions or worse spread of Leishmania parasites to other body sites. To accelerate the identification and development of novel cutaneous leishmaniasis therapeutics, we designed an integrated in vitro and in vivo screening platform that incorporated multiple Leishmania life cycles and species and probed a focused library of pharmaceutically active compounds. The objective of this phenotypic drug discovery platform was the identification and prioritization of bona fide cytotoxic chemotypes toward Leishmania parasites. We identified the Food and Drug Administration-approved drug auranofin, a known inhibitor of Leishmania promastigote growth, as a potent cytotoxic anti-leishmanial agent and inducer of apoptotic-like death in promastigotes. Significantly, the anti-leishmanial activity of auranofin transferred to cell-based amastigote assays as well as in vivo murine models. With appropriate future investigation, these data may provide the foundation for potential exploitation of gold(I)-based complexes as chemical tools or the basis of therapeutics for leishmaniasis. Thus, auranofin may represent a prototype drug that can be used to identify signaling pathways within the parasite and host cell critical for parasite growth and survival.

Collaboration


Dive into the Elizabeth R. Sharlow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge