Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth S. Poole is active.

Publication


Featured researches published by Elizabeth S. Poole.


The EMBO Journal | 1995

The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli.

Elizabeth S. Poole; Chris M. Brown; Warren P. Tate

A statistical analysis of > 2000 Escherichia coli genes suggested that the base following the translational stop codon might be an important feature of the signal for termination. The strengths of each of 12 possible ‘four base stop signals’ (UAAN, UGAN and UAGN) were tested in an in vivo termination assay that measured termination efficiency by its direct competition with frameshifting. Termination efficiencies varied significantly depending on both the stop codon and the fourth base, ranging from 80 (UAAU) to 7% (UGAC). For both the UAAN and UGAN series, the fourth base hierarchy was U > G > A approximately C. UAG stop codons, which are used rarely in E. coli, showed efficiencies comparable with UAAN and UGAN, but differed in that the hierarchy of the fourth base was G > U approximately A > C. The rate of release factor selection varied 30‐fold at UGAN stop signals, and 10‐fold for both the UAAN and UAGN series; it correlated well with the frequency with which the different UAAN and UGAN signals are found at natural termination sites. The results suggest that the identity of the base following the stop codon determines the efficiency of translational termination in E. coli. They also provide a rationale for the use of the strong UAAU signal in highly expressed genes and for the occurrence of the weaker UGAC signal at several recording sites.


Biochimica et Biophysica Acta | 2000

Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis.

Elizabeth S. Poole; Warren P. Tate

The decoding of stop signals in mRNA requires protein release factors. Two classes of factor are found in both prokaryotes and eukaryotes, a decoding factor and a stimulatory recycling factor. These factors form complexes at the active centre of the ribosome and mimic in overall shape the complexes found at other stages of protein synthesis. The decoding release factor is shaped like a tRNA and has a domain for codon recognition at the decoding site of the ribosome, and a domain for peptidyl-tRNA hydrolysis that is inferred to be near the peptidyltransferase centre. Initial interaction of the decoding factor with the ribosome is a low fidelity event involving multiple contacts with the ribosomal components. A subsequent discrimination step, at present poorly defined, ensures high fidelity of codon recognition.


Biochimie | 1996

The translational stop signal: codon with a context, or extended factor recognition element?

Warren P. Tate; Elizabeth S. Poole; Mark E. Dalphin; Louise L. Major; D.J.G. Crawford; Sally A. Mannering

Wide ranging studies of the readthrough of translational stop codons within the last 25 years have suggested that the stop codon might be only part of the molecular signature for recognition of the termination signal. Such studies do not distinguish between effects on suppression and effects on termination, and so we have used a number of different approaches to deduce whether the stop signal is a codon with a context or an extended factor recognition element. A data base of natural termination sites from a wide range of organisms (148 organisms, approximately 40,000 sequences) shows a very marked bias in the bases surrounding the stop codon in the genes for all organisms examined, with the most dramatic bias in the base following the codon (+4). The nature of this base determines the efficiency of the stop signal in vivo, and in Escherichia coli this is reinforced by overexpressing the stimulatory factor, release factor 3. Strong signals, defined by their high relative rates of selecting the decoding release factors, are enhanced whereas weak signals respond relatively poorly. Site-directed cross-linking from the +1, and bases up to +6 but not beyond make close contact with the bacterial release factor-2. The translational stop signal is deduced to be an extended factor recognition sequence with a core element, rather than simply a factor recognition triplet codon influenced by context.


Journal of Biological Chemistry | 2007

Mammalian Gene PEG10 Expresses Two Reading Frames by High Efficiency -1 Frameshifting in Embryonic-associated Tissues

Michael B. Clark; Martina Jänicke; Undine Gottesbühren; Torsten Kleffmann; Michael Legge; Elizabeth S. Poole; Warren P. Tate

Paternally expressed gene 10 (PEG10) is a mammalian gene that is essential for embryonic development in mice. The gene contains two overlapping open reading frames (ORF1 and ORF2) and is derived from a retroelement that acquired a cellular function. It is not known if both reading frames are required for PEG10 function. Synthesis of ORF2 would be possible only if programmed –1 frameshifting occurred during ORF1 translation. In this study the frameshifting activity of PEG10 was analyzed in vivo, and a potential role for ORF2 was investigated. Phylogenetic analysis demonstrated that PEG10 is highly conserved in therian mammals, with all species retaining the elements necessary for frameshifting as well as functional motifs in each ORF. The frameshift site of PEG10 was highly active in cultured cells and produced the ORF1-2 protein. In mice, endogenous ORF1 and an ORF1-2 frameshift protein were detected in the developing placenta and amniotic membrane from 9.5 days post-coitus through to term with a very high frameshift efficiency (>60%). Mutagenesis of the active site motif of a putative protease within ORF2 showed that this enzyme is active and participates in post-translational processing of PEG10 ORF1-2. Both PEG10 proteins were also detected in first trimester human placenta. By contrast, neither protein expression nor frameshifting was detected in adult mouse tissues. These studies imply that the ORF1-2 protein, synthesized utilizing the most efficient –1 frameshift mechanism yet documented in vivo, will have an essential function that is intrinsic to the importance of PEG10 in mammals.


Progress in Nucleic Acid Research and Molecular Biology | 1996

HIDDEN INFIDELITIES OF THE TRANSLATIONAL STOP SIGNAL

Warren P. Tate; Elizabeth S. Poole; Sally A. Mannering

Publisher Summary This chapter provides evidence that there is a subtle layer of cellular regulation in which translational stop signals play a part and for which the relative strength of the signals is critical. Specific signals for the termination of protein synthesis were predicted from the studies of nonsense mutations. Such mutations were associated with the appearance of amino-terminal fragments of the affected gene products, indicating that protein synthesis had been prematurely terminated. A simultaneous investigation with the bacteriophage T4rII gene also identified UAA and UAG as translational stop codons. The historical development of ideas and discoveries related to the functioning of the genetic code has molded the perception about the translational stop signal as a triplet. However, experiments investigating the effects of the surrounding nucleotide sequence and the suppression of stop signals by suppressor or noncognate tRNAs suggested hidden infidelities in the signal. There is much evidence suggesting that the efficiency of translational stop signals can be influenced in cis by the surrounding sequence of mRNA. There are some examples of suppression of translational stop signals by naturally occurring tRNAs that may be physiologically significant. Special protein factors are involved in the recognition of translational stop signals as part of the termination machinery. Their existence was initially suggested by in vitro studies indicating a factor in cell-free extracts apart from tRNA, ribosomes, or elongation factors that influenced peptide release.


Nucleic Acids Research | 2006

Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms

Andrew G. Cridge; Louise L. Major; Alhad A. Mahagaonkar; Elizabeth S. Poole; Leif A. Isaksson; Warren P. Tate

Six diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5′ and 3′ of the stop codon. A preferred core signal of 4 nt was evident, encompassing the stop codon and the following nucleotide. Codons decoded by hyper-modified tRNAs were over-represented in the region 5′ to the stop codon in genes from both kingdoms. The origin of the 3′ bias was more variable particularly among the prokaryotic organisms. In both kingdoms, genes with the highest expression index exhibited a strong bias but genes with the lowest expression showed none. Absence of bias in parasitic prokaryotes may reflect an absence of pressure to evolve more efficient translation. Experiments were undertaken to determine if a correlation existed between bias in signal abundance and termination efficiency. In Escherichia coli signal abundance correlated with termination efficiency for UAA and UGA stop codons, but not in mammalian cells. Termination signals that were highly inefficient could be made more efficient by increasing the concentration of the cognate decoding release factor.


The EMBO Journal | 2001

A dynamic competition between release factor 2 and the tRNASec decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H

John B. Mansell; Diane Guévremont; Elizabeth S. Poole; Warren P. Tate

Factors affecting competition between termination and elongation in vivo during translation of the fdhF selenocysteine recoding site (UGA) were studied with wild‐type and modified fdhF sequences. Altering sequences surrounding the recoding site UGA without affecting RNA secondary structure indicated that the kinetics of stop signal decoding have a significant influence on selenocysteine incorporation efficiency. The UGA in the wild‐type fdhF sequence remains ‘visible’ to the factor and forms a site‐directed cross‐link when mRNA stem–loop secondary structure is absent, but not when it is present. The timing of the secondary structure unfolding during translation may be a critical feature of competition between release factor 2 and tRNASec for decoding UGA. Increasing the cellular concentration of either of these decoding molecules for termination or selenocysteine incorporation showed that they were able to compete for UGA by a kinetic competition that is dynamic and dependent on the Escherichia coli growth rate. The tRNASec‐mediated decoding can compete more effectively for the UGA recoding site at lower growth rates, consistent with anaerobic induction of fdhF expression.


RNA | 2010

Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria

David J. Young; Christina D. Edgar; Jennifer Murphy; Johannes Fredebohm; Elizabeth S. Poole; Warren P. Tate

Vertebrate mitochondria use stop codons UAA and UAG decoded by the release factor (RF) MTRF1L and two reassigned arginine codons, AGA and AGG. A second highly conserved RF-like factor, MTRF1, which evolved from a gene duplication of an ancestral mitochondrial RF1 and not a RF2, is a good candidate for recognizing the nonstandard codons. MTRF1 differs from other RFs by having insertions in the two external loops important for stop codon recognition (tip of helix alpha5 and recognition loop) and by having key substitutions that are involved in stop codon interactions in eubacterial RF/ribosome structures. These changes may allow recognition of the larger purine base in the first position of AGA/G and, uniquely for RFs, only of G at position 2. In contrast, residues that support A and G recognition in the third position in RF1 are conserved as would be required for recognition of AGA and AGG. Since an assay with vertebrate mitochondrial ribosomes has not been established, we modified Escherichia coli RF1 at the helix alpha5 and recognition loop regions to mimic MTRF1. There was loss of peptidyl-tRNA hydrolysis activity with standard stop codons beginning with U (e.g., UAG), but a gain of activity with codons beginning with A (AAG in particular). A lower level of activity with AGA could be enhanced by solvent modification. These observations imply that MTRF1 has the characteristics to recognize A as the first base of a stop codon as would be required to decode the nonstandard codons AGA and AGG.


Progress in Nucleic Acid Research and Molecular Biology | 2003

Molecular mimicry in the decoding of translational stop signals

Elizabeth S. Poole; Marjan E Askarian-Amiri; Louise L. Major; Kim K. McCaughan; Debbie-Jane G Scarlett; Daniel N. Wilson; Warren P. Tate

Molecular mimicry was a concept that was revived as we understood more about the ligands that bound to the active center of the ribosome, and the characteristics of the active center itself. It has been particularly useful for the termination phase of protein synthesis, because for many years this major process seemed not only to be out of step) with the initiation and elongation phases but also there were no common features of the process between eubacteria and eukaryotes. As the facts that supported molecular mimicry emerged, it was seen that the protein factors that facilitated polypeptide chain release when the decoding of an mRNA was complete had common features with the ligands involved in the other phases. Moreover, now common features and mechanisms began to emerge between the eubacterial and eukaryotic RFs and suddenly there seemed to be remarkable synergy between the external ligands and commonality in at least some features of the mechanistic prnciples. Almost 10 years after molecular mimicry took hold as a framework concept, we can now see that this idea is probably too simple. For example, structural mimicry can be apparent if there are extensive conformational changes either in the ribosome active center or in the ligand itself or, most likely, both. Early indications are that the bacterial RF may indeed undergo extensive conformational changes from its solution structure to achieve this accommodation. Thus, as important if not more important than structural and functional mimicry among the ligands, might be their accomodation of a common single active center made up of at least three parts to carry out a complex series of reactions. One part of the ribosomal active center is committed to decoding, a second is committed to the chemistry of putting the protein together and releasing it, and a third part, perhaps residing in the subdomains, is committed to binding ligands so that they can perform their respective single or multiple functions. It might be more accurate to regard the decoding RF as the cuckoo taking over the nest that was crafted and honed through evolution by another, the tRNA. A somewhat ungainly RF, perhaps bigger in dimensions than the tRNA, is able, nevertheless, like the cuckoo, to maneuvre into the nest. Perhaps it pushes the nest a little out of shape, but is still able to use the site for its own functions of stop signal decoding and for facilitating the release of the polypeptide. The term molecular mimicry has been dominant in the literature for a period of important advances in the understanding of protein synthesis. When the first structures of the ribosome appeared, the concept survived and was seen to be valid still. Now, we are at the stage of understanding the more detailed molecular interactions between ligands and the rRNA in particular, and how subtle changes in localized spatial orientations of atoms occur within these interactions. The simplicity of the original concept of mimicry will inevitably be blurred by this more detailed analysis. Nevertheless, it has provided a significant set of principles that allowed development of experimental programs to enhance our understanding of the dynamic events at this remarkable active site at the interface between the two subunits of this fascinating cell organelle, the ribosome.


Journal of Biological Chemistry | 2000

Functional characterization of yeast mitochondrial release factor 1.

Marjan E Askarian-Amiri; Herman Jan Pel; Diane Guévremont; Kim K. McCaughan; Elizabeth S. Poole; Vicki G. Sumpter; Warren P. Tate

The yeast Saccharomyces cerevisiaemitochondrial release factor was expressed from the clonedMRF1 gene, purified from inclusion bodies, and refolded to give functional activity. The gene encoded a factor with release activity that recognized cognate stop codons in a termination assay with mitochondrial ribosomes and in an assay with Escherichia coli ribosomes. The noncognate stop codon, UGA, encoding tryptophan in mitochondria, was recognized weakly in the heterologous assay. The mitochondrial release factor 1 protein bound to bacterial ribosomes and formed a cross-link with the stop codon within a mRNA bound in a termination complex. The affinity was strongly dependent on the identity of stop signal. Two alleles of MRF1 that contained point mutations in a release factor 1 specific region of the primary structure and that in vivo compensated for mutations in the decoding site rRNA of mitochondrial ribosomes were cloned, and the expressed proteins were purified and refolded. The variant proteins showed impaired binding to the ribosome compared with mitochondrial release factor 1. This structural region in release factors is likely to be involved in codon-dependent specific ribosomal interactions.

Collaboration


Dive into the Elizabeth S. Poole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge