Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Warren P. Tate is active.

Publication


Featured researches published by Warren P. Tate.


Progress in Neurobiology | 2003

Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory.

Paul R. Turner; Kate O’Connor; Warren P. Tate; Wickliffe C. Abraham

Amyloid-beta precursor protein (APP) is a membrane-spanning protein with a large extracellular domain and a much smaller intracellular domain. It is the source of the amyloid-beta (Abeta) peptide found in neuritic plaques of Alzheimers disease (AD) patients. Because Abeta shows neurotoxic properties, and because familial forms of AD promote Abeta accumulation, a massive international research effort has been aimed at understanding the mechanisms of Abeta generation, catabolism and toxicity. APP, however, is an extremely complex molecule that may be a functionally important molecule in its full-length configuration, as well as being the source of numerous fragments with varying effects on neural function. For example, one fragment derived from the non-amyloidogenic processing pathway, secreted APPalpha (sAPPalpha), is neuroprotective, neurotrophic and regulates cell excitability and synaptic plasticity, while Abeta appears to exert opposing effects. Less is known about the neural functions of other fragments, but there is a growing interest in understanding the basic biology of APP as it has become recognized that alterations in the functional activity of the APP fragments during disease states will have complex effects on cell function. Indeed, it has been proposed that reductions in the level or activity of certain APP fragments, in addition to accumulation of Abeta, may play a critical role in the cognitive dysfunction associated with AD, particularly early in the course of the disease. To test and modify this hypothesis, it is important to understand the roles that full-length APP and its fragments normally play in neuronal structure and function. Here we review evidence addressing these fundamental questions, paying particular attention to the contributions that APP fragments play in synaptic transmission and neural plasticity, as these may be key to understanding their effects on learning and memory. It is clear from this literature that APP fragments, including Abeta, can exert a powerful regulation of key neural functions including cell excitability, synaptic transmission and long-term potentiation, both acutely and over the long-term. Furthermore, there is a small but growing literature confirming that these fragments correspondingly regulate behavioral learning and memory. These data indicate that a full account of cognitive dysfunction in AD will need to incorporate the actions of the full complement of APP fragments. To this end, there is an urgent need for a dedicated research effort aimed at understanding the behavioral consequences of altered levels and activity of the different APP fragments as a result of experience and disease.


Neuroscience | 1993

Correlations between immediate early gene induction and the persistence of long-term potentiation.

Wickliffe C. Abraham; S.E. Mason; Jerome Demmer; Joanna M. Williams; C.L. Richardson; Warren P. Tate; P. Lawlor; M. Dragunow

The duration of long-term potentiation in the dentate gyrus of awake rats was examined following systematic manipulation of the number of stimulus trains delivered. This was correlated with the induction of immediate early genes in separate groups of animals given identical stimulus regimes. Following 10 trains of stimulation, long-term potentiation decayed with a time constant of up to several days (long-term potentiation 2), and this correlated with the appearance of an increase in the messenger RNA and protein levels of zif/268. Increasing the number of stimulus trains resulted in a greater probability of eliciting long-term potentiation with a time constant of several weeks (long-term potentiation 3), as well as increasing the induction of zif/268, c-Jun, Jun-B, Jun-D and Fos-related proteins. When 10 trains were delivered repeatedly on up to five consecutive days, only the zif/268 protein levels showed associated changes. These data provide support for the hypothesis that long-term potentiation 3 involves mechanisms additional to those for long-term potentiation 2. One possible mechanism is altered gene expression, initiated by immediate early gene transcription factors such as zif/268 and possibly homo- or heterodimers of Fos and Jun family members, that then contributes to the stabilization or maintenance of long-term potentiation 3.


Neuroscience | 1989

Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization

S. Otani; C.J. Marshall; Warren P. Tate; Graham V. Goddard; Wickliffe C. Abraham

The involvement of new protein and messenger ribonucleic acid synthesis in long-term potentiation was studied in the anaesthetized rat dentate gyrus using several inhibitors of protein synthesis (anisomycin, emetine, cycloheximide and puromycin) and an inhibitor of messenger ribonucleic acid synthesis (actinomycin D). When injected for 1 h just prior to tetanization, the four inhibitors of protein synthesis produced a mild reduction of long-term potentiation of the excitatory postsynaptic potential measured 10 min after tetanization. Anisomycin produced a significantly faster decay of long-term potentiation, while the other inhibitors had more moderate effects. Actinomycin D failed to affect long-term potentiation. In a second experiment, the time-dependency of the anisomycin effect was examined. Anisomycin injected immediately after tetanization promoted decay of long-term potentiation, but when injected after a 15-min delay, the drug had no effect. Inhibition of protein synthesis for 4 h prior to tetanization did not have any more effect on long-term potentiation than inhibition for 1 h. In no experiment was long-term potentiation of the population spike affected by drug manipulation. These results suggest that for long-term potentiation of the excitatory postsynaptic potential to be maintained for at least 3 h proteins must be synthesized from already existing messenger ribonucleic acid, and that this synthesis is mostly completed within 15 min after tetanization.


The EMBO Journal | 1995

The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli.

Elizabeth S. Poole; Chris M. Brown; Warren P. Tate

A statistical analysis of > 2000 Escherichia coli genes suggested that the base following the translational stop codon might be an important feature of the signal for termination. The strengths of each of 12 possible ‘four base stop signals’ (UAAN, UGAN and UAGN) were tested in an in vivo termination assay that measured termination efficiency by its direct competition with frameshifting. Termination efficiencies varied significantly depending on both the stop codon and the fourth base, ranging from 80 (UAAU) to 7% (UGAC). For both the UAAN and UGAN series, the fourth base hierarchy was U > G > A approximately C. UAG stop codons, which are used rarely in E. coli, showed efficiencies comparable with UAAN and UGAN, but differed in that the hierarchy of the fourth base was G > U approximately A > C. The rate of release factor selection varied 30‐fold at UGAN stop signals, and 10‐fold for both the UAAN and UAGN series; it correlated well with the frequency with which the different UAAN and UGAN signals are found at natural termination sites. The results suggest that the identity of the base following the stop codon determines the efficiency of translational termination in E. coli. They also provide a rationale for the use of the strong UAAU signal in highly expressed genes and for the occurrence of the weaker UGAC signal at several recording sites.


Molecular Neurobiology | 1991

The role of immediate early genes in the stabilization of long-term potentiation.

Wickliffe C. Abraham; M. Dragunow; Warren P. Tate

Immediate early genes (IEGs) are a class of genes that show rapid and transient but protein synthesisindependent increases in expression to extracellular signals such as growth factors and neurotransmitters. Many IEGs code for transcription factors that have been suggested to govern the growth and differentiation of many cell types by regulating the expression of other genes. IEGs are expressed in adult neurons both constitutively and in response to afferent activity, and it has been suggested that during learning, IEGs may play a role in the signal cascade, resulting in the expression of genes critical for the consolidation of long-term memory. Long-term potentiation (LTP) is a persistent activity-dependent form of synaptic plasticity that stands as a good candidate for the mechanism of associative memory. A number of IEGs coding for transcription factors have been shown to transiently increase transcription in the dentate gyrus of rats following LTP-inducing afferent stimulation. These includezif/268 (also termedNGFI-A, Krox-24, TIS-8, andegr-l),c-fos-related genes,c-jun, junB, and junD. Of these,zif/268 appears to be the most specifically related to LTP since it is evoked under virtually all LTP-inducing situations and shows a remarkably high correlation with the duration of LTP. There are a number of outstanding questions regarding the role ofzif/268 and other IEGs in LTP, including which second messenger systems are important for activating them, which “late effector” genes are regulated by them, and the exact role these genes play, if any, in the stabilization and maintenance of LTP.


Brain Research | 1992

Correlation between the induction of an immediate early gene,zif/268, and long-term potentiation in the dentate gyrus

C.L. Richardson; Warren P. Tate; S.E. Mason; P. Lawlor; M. Dragunow; Wickliffe C. Abraham

Expression of the immediate early gene zif/268 (also termed NGFI-A, Krox 24, TIS8 and Egr-1) was investigated in awake rats following various long-term potentiation (LTP) induction protocols. zif/268 mRNA (Northern blots) and protein (immunohistochemistry) levels sharply increased following LTP, and followed a time course characteristic of other immediate early genes. When measured across 3 tetanization protocols known to produce differing degrees of LTP persistence, zif/268 induction was found to be more highly correlated with LTP duration than with the magnitude of initial LTP. These data support the hypothesis that the immediate early gene zif/268 plays a role as a third messenger in the cascade of cellular and nuclear events that govern the persistence of LTP.


Gene | 2001

Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli.

C.Magnus Stenström; Haining Jin; Louise L. Major; Warren P. Tate; Leif A. Isaksson

The codon that follows the AUG initiation triplet (+2 codon) affects gene expression in Escherichia coli. We have extended this analysis using two model genes lacking any apparent Shine-Dalgarno sequence. Depending on the identity of the +2 codon a difference in gene expression up to 20-fold could be obtained. The effects did not correlate with the levels of intracellular pools of cognate tRNA for the +2 codon, with putative secondary mRNA structures, or with mRNA stability. However, most +2 iso-codons that were decoded by the same species of tRNA gave pairwise similar effects, suggesting that the effect on gene expression was associated with the decoding tRNA. High adenine content of the +2 codon was associated with high gene expression. Of the fourteen +2 codons that mediated the highest efficiency, all except two had an adenine as the first base of the codon. Analysis of the 3540 E. coli genes from the TransTerm database revealed that codons associated with high gene expression in the two expression systems are over-represented at the +2 position in natural genes. Codons that are associated with low gene expression are under-represented. The data suggest that evolution has favored codons at the +2 position that give high translation initiation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP.

Wickliffe C. Abraham; Sara E. Mason-Parker; Mark F. Bear; Sierra Webb; Warren P. Tate

The homeostatic maintenance of the “modification threshold” for inducing long-term potentiation (LTP) is a fundamental feature of the Bienenstock, Cooper, and Munro (BCM) model of synaptic plasticity. In the present study, two key features of the modification threshold, its heterosynaptic expression and its regulation by postsynaptic neural activity, were tested experimentally in the dentate gyrus of awake, freely moving rats. Conditioning stimulation ranging from 10 to 1,440 brief 400-Hz trains, when applied to medial perforant path afferents, raised the threshold for LTP induction heterosynaptically in the neighboring lateral perforant path synapses. This effect recovered slowly over a 7- to 35-day period. The same conditioning paradigms, however, did not affect the reversal of long-term depression. The inhibition of LTP by medial-path conditioning stimulation was N-methyl-D-aspartate (NMDA) receptor-dependent, but antidromic stimulation of the granule cells could also inhibit lateral path LTP induction, independently of NMDA receptor activation. Increased calcium buffering is a potential mechanism underlying the altered LTP threshold, but the levels of two important calcium-binding proteins did not increase after conditioning stimulation, nor was de novo protein synthesis required for generating the threshold shift. These data confirm, in an in vivo model, two key postulates of the BCM model regarding the LTP threshold. They also provide further evidence for the broad sensitivity of synaptic plasticity mechanisms to the history of prior activity, i.e., metaplasticity.


Neurobiology of Disease | 2008

Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory

Chanel J. Taylor; David R. Ireland; Irene Ballagh; Katie Bourne; Nicola M. Marechal; Paul R. Turner; David K. Bilkey; Warren P. Tate; Wickliffe C. Abraham

Secreted amyloid precursor protein-alpha (sAPP alpha) levels are reduced during the pathogenesis of Alzheimers disease, but the significance of this for neural function is not well understood. Here, we show that intrahippocampal infusion of antibodies targeted to endogenous sAPP alpha reduced long-term potentiation (LTP) in the dentate gyrus of adult rats by approximately 50%. Conversely, infusion of recombinant sAPP alpha dose-dependently increased LTP and facilitated in vitro tetanically evoked NMDA receptor-mediated currents. Pharmacological inhibition of alpha-secretase and other a-disintegrin-and-metalloproteases by TAPI-1 reduced both LTP and tetanus-evoked NMDA receptor-mediated currents in dentate granule cells. Both effects were prevented by co-application of exogenous recombinant sAPP alpha. Similarly, spatial memory was inhibited by intrahippocampal TAPI-1, an effect that was prevented by co-application of recombinant sAPP alpha. Together these findings indicate that endogenous sAPP alpha is a key contributor to synaptic plasticity and spatial memory. Its reduced production in Alzheimers disease may thus contribute to the clinical memory deficits.


Molecular Microbiology | 1996

Three, four or more: the translational stop signal at length

Warren P. Tate; Sally A. Mannering

Translational stop signals are defined in the genetic code as UAA, UAG and UGA, although the mechanism of their decoding via protein factors is clearly different from that of the other codons. There are strong biases in the upstream and downstream nucleotides surrounding stop codons. Experimental tests have shown that termination‐signal strength is strongly influenced by the identity of the nucleotide immediately downstream of the codon (+4), with a correlation between the strength of this four‐base signal and its occurrence at termination sites. The +4 nucleotide and other biases downstream of the stop codon may reflect sites of contact between the release factor and the mRNA, whereas upstream biases may be due to coding restrictions, with the release factor perhaps recognizing the final tRNA and the last two amino acids of the polypeptide undergoing synthesis. This means that the translational stop signal is probably larger than the triplet codon, but its exact length will be clearer when it is known which nucleotides are in direct contact with the release factor. Ultimately it will be defined exactly when a crystal structure of the release factor with its recognition substrate becomes available.

Collaboration


Dive into the Warren P. Tate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge