Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Sams is active.

Publication


Featured researches published by Elizabeth Sams.


Environmental Health Perspectives | 2006

Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness.

Timothy J. Wade; Rebecca L. Calderon; Elizabeth Sams; Michael L Beach; Kristen P. Brenner; Ann Williams; Alfred P. Dufour

Standard methods to measure recreational water quality require at least 24 hr to obtain results, making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in ≤ 2 hr have been developed. Application of rapid methods could give considerably more accurate and timely assessments of recreational water quality. We conducted a prospective study of beachgoers at two Great Lakes beaches to examine the association between recreational water quality, obtained using rapid methods, and gastrointestinal (GI) illness after swimming. Beachgoers were asked about swimming and other beach activities and 10–12 days later were asked about the occurrence of GI symptoms. We tested water samples for Enterococcus and Bacteroides species using the quantitative polymerase chain reaction (PCR) method. We observed significant trends between increased GI illness and Enterococcus at the Lake Michigan beach and a positive trend for Enterococcus at the Lake Erie beach. The association remained significant for Enterococcus when the two beaches were combined. We observed a positive trend for Bacteroides at the Lake Erie beach, but no trend was observed at the Lake Michigan beach. Enterococcus samples collected at 0800 hr were predictive of GI illness that day. The association between Enterococcus and illness strengthened as time spent swimming in the water increased. This is the first study to show that water quality measured by rapid methods can predict swimming-associated health effects.


Epidemiology | 2008

High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality.

Timothy J. Wade; Rebecca L. Calderon; Kristen P. Brenner; Elizabeth Sams; Michael J. Beach; Richard A. Haugland; Larry Wymer; Alfred P. Dufour

Background: Culture-based methods of monitoring fecal pollution in recreational waters require 24 to 48 hours to obtain results. This delay leads to potentially inaccurate management decisions regarding beach safety. We evaluated the quantitative polymerase chain reaction (QPCR) as a faster method to assess recreational water quality and predict swimming-associated illnesses. Methods: We enrolled visitors at 4 freshwater Great Lakes beaches, and contacted them 10 to 12 days later to ask about health symptoms experienced since the visit. Water at the beaches was polluted by point sources that carried treated sewage. We tested water samples daily for Enterococcus using QPCR and membrane filtration (EPA Method 1600). Results: We completed 21,015 interviews and tested 1359 water samples. Enterococcus QPCR cell equivalents (CEs) were positively associated with swimming-associated gastrointestinal (GI) illness (adjusted odds ratio per 1 log10 QPCR CE =1.26; 95% confidence interval = 1.06–1.51). The association between GI illness and QPCR CE was stronger among children aged 10 years and below (1.69; 1.24–2.30). Nonenteric illnesses were not consistently associated with Enterococcus QPCR CE exposure, although rash and earache occurred more frequently among swimmers. Enterococcus QPCR CE exposure was more strongly associated with GI illness than Enterococcus measured by membrane filtration. Conclusions: Measurement of the indicator bacteria Enterococci in recreational water using a rapid QPCR method predicted swimming-associated GI illness at freshwater beaches polluted by sewage discharge. Children at 10 years or younger were at greater risk for GI illness following exposure.


Environmental Health | 2010

Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study.

Timothy J. Wade; Elizabeth Sams; Kristen P. Brenner; Richard A. Haugland; Eunice C. Chern; Michael J. Beach; Larry Wymer; Clifford C. Rankin; David C. Love; Quanlin Li; Rachel T. Noble; Alfred P. Dufour

IntroductionIn the United States and elsewhere, recreational water quality is monitored for fecal indicator bacteria to help prevent swimming-associated illnesses. Standard methods to measure these bacteria take at least 24 hours to obtain results. Molecular approaches such as quantitative polymerase chain reaction (qPCR) can estimate these bacteria faster, in under 3 hours. Previously, we demonstrated that measurements of the fecal indicator bacteria Enterococcus using qPCR were associated with gastrointestinal (GI) illness among swimmers at freshwater beaches. In this paper, we report on results from three marine beach sites.MethodsWe interviewed beach-goers and collected water samples at marine beaches affected by treated sewage discharges in Mississippi in 2005, and Rhode Island and Alabama in 2007. Ten to twelve days later, we obtained information about gastrointestinal, respiratory, eye, ear and skin symptoms by telephone. We tested water samples for fecal indicator organisms using qPCR and other methods.ResultsWe enrolled 6,350 beach-goers. The occurrence of GI illness among swimmers was associated with a log10-increase in exposure to qPCR-determined estimates of fecal indicator organisms in the genus Enterococcus (AOR = 2.6, 95% CI 1.3-5.1) and order Bacteroidales (AOR = 1.9, 95% CI 1.3-2.9). Estimates of organisms related to Clostridium perfringens and a subgroup of organisms in the genus Bacteroides were also determined by qPCR in 2007, as was F+ coliphage, but relationships between these indicators and illness were not statistically significant.ConclusionsThis study provides the first evidence of a relationship between gastrointestinal illness and estimates of fecal indicator organisms determined by qPCR at marine beaches.


American Journal of Epidemiology | 2009

Contact with beach sand among beachgoers and risk of illness.

Christopher D. Heaney; Elizabeth Sams; Steve Wing; Steve Marshall; Kristen P. Brenner; Alfred P. Dufour; Timothy J. Wade

Recent studies of beach sand fecal contamination have triggered interest among scientists and in the media. Although evidence shows that beach sand can harbor high concentrations of fecal indicator organisms, as well as fecal pathogens, illness risk associated with beach sand contact is not well understood. Beach visitors at 7 US beaches were enrolled in the National Epidemiological and Environmental Assessment of Recreational Water (NEEAR) Study during 2003-2005 and 2007 and asked about sand contact on the day of their visit to the beach (digging in the sand, body buried in the sand). Then, 10-12 days after their visit, participants were telephoned to answer questions about any health symptoms experienced since the visit. The authors completed 27,365 interviews. Digging in the sand was positively associated with gastrointestinal illness (adjusted incidence proportion ratio (aIPR) = 1.13, 95% confidence interval (CI): 1.02, 1.25) and diarrhea (aIPR = 1.20, 95% CI: 1.05, 1.36). The association was stronger between those buried in the sand and gastrointestinal illness (aIPR = 1.23, 95% CI: 1.05, 1.43) and diarrhea (aIPR = 1.24, 95% CI: 1.01, 1.52). Nonenteric illnesses did not show a consistent association with sand contact activities. Sand contact activities were associated with enteric illness at beach sites. Variation in beach-specific results suggests that site-specific factors may be important in the risk of illness following sand exposure.


Epidemiology | 2012

Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers

Christopher D. Heaney; Elizabeth Sams; Alfred P. Dufour; Kristen P. Brenner; Richard A. Haugland; Eunice C. Chern; Steve Wing; Stephen W. Marshall; David C. Love; Marc L. Serre; Rachel T. Noble; Timothy J. Wade

Background: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results: We analyzed 144 wet sand samples and completed 4999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among nonswimmers with sand exposure. Conclusions: We observed a positive relationship between sand-contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand.


Environmental Science & Technology | 2012

Dramatic Improvements in Beach Water Quality Following Gull Removal

Reagan R. Converse; Julie L. Kinzelman; Elizabeth Sams; Edward Hudgens; Alfred P. Dufour; Hodon Ryu; Jorge W. Santo-Domingo; Catherine A. Kelty; Orin C. Shanks; Shawn D. Siefring; Richard A. Haugland; Timothy J. Wade

Gulls are often cited as important contributors of fecal contamination to surface waters, and some recreational beaches have used gull control measures to improve microbial water quality. In this study, gulls were chased from a Lake Michigan beach using specially trained dogs, and water quality improvements were quantified. Fecal indicator bacteria and potentially pathogenic bacteria were measured before and during gull control using culture methods and quantitative polymerase chain reaction (qPCR). Harassment by dogs was an effective method of gull control: average daily gull populations fell from 665 before to 17 during intervention; and a significant reduction in the density of a gull-associated marker was observed (p < 0.001). Enterococcus spp. and Escherichia coli densities were also significantly reduced during gull control (p < 0.001 and p = 0.012, respectively for culture methods; p = 0.012 and p = 0.034, respectively for qPCR). Linear regression results indicate that a 50% reduction in gulls was associated with a 38% and 29% decrease in Enterococcus spp. and E. coli densities, respectively. Potentially human pathogenic bacteria were detected on 64% of days prior to gull control and absent during gull intervention, a significant reduction (p = 0.005). This study demonstrates that gull removal can be a highly successful beach remedial action to improve microbial water quality.


Water Research | 2009

Modeling Enterococcus densities measured by quantitative polymerase chain reaction and membrane filtration using environmental conditions at four Great Lakes beaches.

Justin W. Telech; Kristen P. Brenner; Rich Haugland; Elizabeth Sams; Alfred P. Dufour; Larry Wymer; Timothy J. Wade

Data collected by the US Environmental Protection Agency (EPA) during the summer months of 2003 and 2004 at four US Great Lakes beaches were analyzed using linear regression analysis to identify relationships between meteorological, physical water characteristics, and beach characteristics data and the fecal indicator bacteria, Enterococcus. Water samples were analyzed for Enterococcus densities by quantitative polymerase chain reaction (qPCR) and membrane filtration (MF). This paper investigates the ability of regression models to accurately predict Enterococcus densities above or below a threshold value, using environmental data on a beach-by-beach basis for both methods. The ability to create statistical models for real-time water quality analysis would allow beach managers to make more accurate decisions regarding beach safety. Results from linear regression models indicate that environmental factors explain more of the variability in Enterococcus densities measured by MF than Enterococcus densities measured by qPCR. Results also show that models for both methods did not perform well at predicting occurrences in which water quality levels exceeded a threshold.


Journal of Microbiological Methods | 2014

Standardization of enterococci density estimates by EPA qPCR methods and comparison of beach action value exceedances in river waters with culture methods.

Richard A. Haugland; Shawn D. Siefring; Manju Varma; Alfred P. Dufour; Kristen P. Brenner; Timothy J. Wade; Elizabeth Sams; Stacey Cochran; Steve Braun; Mano Sivaganensan

The U.S. EPA has published recommendations for calibrator cell equivalent (CCE) densities of enterococci in recreational waters determined by a qPCR method in its 2012 recreational water quality criteria (RWQC). The CCE quantification unit stems from the calibration model used to estimate enterococci densities in recreational beach waters in the EPA National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study and directly informed the derivation of the RWQC recommendations. Recent studies have demonstrated that CCE estimates from the method can vary when using different cultured Enterococcus cell preparations in calibrator samples. These differences have been attributed to differences in the quantities of targeted gene copies (target sequences) that are recovered per nominal calibrator cell by DNA extraction. Standardization of results from the calibration model will require the estimation of target sequence recoveries from the calibrator and water samples. In addition, comparisons of water sample results with the RWQC values will require a knowledge of target sequence recoveries from the NEEAR study calibrator samples. In this study recoveries of target sequences and the mean target sequence/cell ratio for the NEEAR study calibrator samples were retrospectively estimated with a corroborated standard curve. A modification of the calibration model was then used to estimate enterococci target sequence quantities in water samples from eight midwestern U.S. rivers. CCE estimates were obtained by dividing these target sequence quantities by the mean NEEAR study target sequence/cell ratio. This target sequence-based quantification approach resulted in a high degree of agreement in beach action decisions (determinations of whether bacterial fecal indicator densities are above or below RWQC-recommended values) from CCE results of the qPCR method and from culture dependent enumeration of both enterococci and Eschericia coli in the corresponding water samples.


Journal of Water and Health | 2015

Swimming in the USA: beachgoer characteristics and health outcomes at US marine and freshwater beaches.

Sarah A. Collier; Timothy J. Wade; Elizabeth Sams; Michele C. Hlavsa; Alfred P. Dufour; Michael J. Beach

Swimming in lakes and oceans is popular, but little is known about the demographic characteristics, behaviors, and health risks of beachgoers on a national level. Data from a prospective cohort study of beachgoers at multiple marine and freshwater beaches in the USA were used to describe beachgoer characteristics and health outcomes for swimmers and non-swimmers. This analysis included 54,250 participants. Most (73.2%) entered the water; of those, 65.1% put their head under water, 41.3% got water in their mouth and 18.5% swallowed water. Overall, 16.3% of beachgoers reported any new health problem. Among swimmers, 6.6% reported gastrointestinal (GI) illness compared with 5.5% of non-swimmers (unadjusted χ² p < 0.001); 6.0% of swimmers and 4.9% of non-swimmers reported respiratory illness (p < 0.001); 1.8% of swimmers and 1.0% of non-swimmers reported ear problems (p < 0.001); and 3.9% of swimmers and 2.4% of non-swimmers experienced a rash (p < 0.001). Overall, swimmers reported a higher unadjusted incidence of GI illness and earaches than non-swimmers. Current surveillance systems might not detect individual cases and outbreaks of illness associated with swimming in natural water. Better knowledge of beachgoer characteristics, activities, and health risks associated with swimming in natural water can improve disease surveillance and prioritize limited resources.


Environmental Health | 2013

The incidence and health burden of earaches attributable to recreational swimming in natural waters: a prospective cohort study

Timothy J. Wade; Elizabeth Sams; Michael J. Beach; Sarah A. Collier; Alfred P. Dufour

BackgroundEaraches and outer ear infections are commonly associated with swimming. In this study, we estimated the excess risk and health burden of earaches due to swimming in natural fresh and marine waters using results from a survey of over 50,000 beachgoers at nine beaches across the United States.MethodsProspective cohort studies were conducted at four freshwater and five marine sites in the United States and Puerto Rico. Beach visitors were enrolled on summer weekends and holidays. Ten to twelve days after the beach visit, respondents answered questions about health symptoms, including earaches or ear infections experienced since the beach visit. Economic and physical burdens were also obtained. Fixed slope, random intercept (beach site) multivariate logistic regression models were used to estimate the relationship between head immersion swimming exposure and earaches. Model results were used to calculate excess risk for earaches attributable to swimming.ResultsThe overall incidence of self-reported earache was 1.6% in the 10–12 days after the beach visit. Earaches were more frequent in head immersion swimmers compared to non-swimmers for all beach sites and age groups. Earaches were unassociated with water sample measures of fecal contamination and turbidity. After adjustment for covariates, we calculated 7.12 excess earaches among head immersion swimmers per 1,000 swimming events. Twenty-four percent of those with earache reported missing their regular activities; 28% visited a doctor; 4% visited the emergency room; and 31% and 40% used prescription and non-prescription medications, respectively.ConclusionsThere are at least 128 million swimming events in natural waters annually. Such frequent exposures could result in 900,000 excess earaches, 260,000 visits to the doctor, 39,900 visits to the emergency room, nearly

Collaboration


Dive into the Elizabeth Sams's collaboration.

Top Co-Authors

Avatar

Timothy J. Wade

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Alfred P. Dufour

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kristen P. Brenner

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Michael J. Beach

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Richard A. Haugland

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Larry Wymer

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Rebecca L. Calderon

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Andrey I. Egorov

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Edward Hudgens

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Reagan R. Converse

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge