Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizaveta Freinkman is active.

Publication


Featured researches published by Elizaveta Freinkman.


Cell | 2015

An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis

Kivanc Birsoy; Tim Wang; Walter W. Chen; Elizaveta Freinkman; Monther Abu-Remaileh; David M. Sabatini

The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation.


Cell | 2015

Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells

Lucas B. Sullivan; Dan Y. Gui; Aaron M. Hosios; Lauren N. Bush; Elizaveta Freinkman; Matthew G. Vander Heiden

Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel

Elizaveta Freinkman; Shu-Sin Chng; Daniel Kahne

The cell surfaces of Gram-negative bacteria are composed of lipopolysaccharide (LPS). This glycolipid is found exclusively in the outer leaflet of the asymmetric outer membrane (OM), where it forms a barrier to the entry of toxic hydrophobic molecules into the cell. LPS typically contains six fatty acyl chains and up to several hundred sugar residues. It is biosynthesized in the cytosol and must then be transported across two membranes and an aqueous intermembrane space to the cell surface. These processes are required for the viability of most Gram-negative organisms. The integral membrane β-barrel LptD and the lipoprotein LptE form an essential complex in the OM, which is necessary for LPS assembly. It is not known how this complex translocates large, amphipathic LPS molecules across the OM to the outer leaflet. Here, we show that LptE resides within the LptD β-barrel both in vitro and in vivo. LptD/E associate via an extensive interface; in one specific interaction, LptE contacts a predicted extracellular loop of LptD through the lumen of the β-barrel. Disrupting this interaction site compromises the biogenesis of LptD. This unprecedented two-protein plug-and-barrel architecture suggests how LptD/E can insert LPS from the periplasm directly into the outer leaflet of the OM to establish the asymmetry of the bilayer.


Science | 2016

Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers

Jared R. Mayers; Margaret E. Torrence; Laura V. Danai; Thales Papagiannakopoulos; Shawn M. Davidson; Matthew R. Bauer; Allison N. Lau; Brian W. Ji; Purushottam D. Dixit; Aaron M. Hosios; Alexander Muir; Christopher R. Chin; Elizaveta Freinkman; Tyler Jacks; Brian M. Wolpin; Dennis Vitkup; Matthew G. Vander Heiden

Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non–small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.


Biochemistry | 2012

Regulated Assembly of the Transenvelope Protein Complex Required for Lipopolysaccharide Export

Elizaveta Freinkman; Suguru Okuda; Natividad Ruiz; Daniel Kahne

Gram-negative bacteria are impervious to many drugs and environmental stresses because they possess an outer membrane (OM) containing lipopolysaccharide (LPS). LPS is biosynthesized at the cytoplasmic (inner) membrane and is transported to the OM by an unknown mechanism involving the LPS transport proteins, LptA-G. These proteins have been proposed to form a bridge between the two membranes; however, it is not known how this bridge is assembled to prevent mistargeting of LPS. We use in vivo photo-cross-linking to reveal the specific protein-protein interaction sites that give rise to the Lpt bridge. We also show that the formation of this transenvelope bridge cannot proceed before the correct assembly of the LPS translocon in the OM. This ordered sequence of events may ensure that LPS is never transported to the OM if it cannot be translocated across it to the cell surface.


Nature Chemical Biology | 2016

A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

Michael E. Pacold; Kyle R. Brimacombe; Sze Ham Chan; Jason M. Rohde; Caroline A. Lewis; Lotteke J.Y.M. Swier; Richard Possemato; Walter W. Chen; Lucas B. Sullivan; Brian Prescott Fiske; Sung Won Cho; Elizaveta Freinkman; Kivanc Birsoy; Monther Abu-Remaileh; Yoav D. Shaul; Chieh Min Liu; Minerva Zhou; Min Jung Koh; Haeyoon Chung; Shawn M. Davidson; Alba Luengo; Amy Wang; Xin Xu; Adam Yasgar; Li Liu; Ganesha Rai; Kenneth D. Westover; Matthew G. Vander Heiden; Min Shen; Nathanael S. Gray

Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.


Cell Reports | 2016

Metabolic Reprogramming of Pancreatic Cancer Mediated by CDK4/6 Inhibition Elicits Unique Vulnerabilities.

Jorge Franco; Uthra Balaji; Elizaveta Freinkman; Agnieszka K. Witkiewicz; Erik S. Knudsen

Due to loss of p16ink4a in pancreatic ductal adenocarcinoma (PDA), pharmacological suppression of CDK4/6 could represent a potent target for treatment. In PDA models, CDK4/6 inhibition had a variable effect on cell cycle but yielded accumulation of ATP and mitochondria. Pharmacological CDK4/6 inhibitors induce cyclin D1 protein levels; however, RB activation was required and sufficient for mitochondrial accumulation. CDK4/6 inhibition stimulated glycolytic and oxidative metabolism and was associated with an increase in mTORC1 activity. MTOR and MEK inhibitors potently cooperate with CDK4/6 inhibition in eliciting cell-cycle exit. However, MTOR inhibition fully suppressed metabolism and yielded apoptosis and suppression of tumor growth in xenograft models. The metabolic state mediated by CDK4/6 inhibition increases mitochondrial number and reactive oxygen species (ROS). Concordantly, the suppression of ROS scavenging or BCL2 antagonists cooperated with CDK4/6 inhibition. Together, these data define the impact of therapeutics on PDA metabolism and provide strategies for converting cytostatic response to tumor cell killing.


Cell | 2017

Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase

Jason R. Cantor; Monther Abu-Remaileh; Naama Kanarek; Elizaveta Freinkman; Xin Gao; Abner Louissaint; Caroline A. Lewis; David M. Sabatini

A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis-an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.


Nature | 2017

LACTB is a tumour suppressor that modulates lipid metabolism and cell state

Zuzana Keckesova; Joana Liu Donaher; Jasmine M. De Cock; Elizaveta Freinkman; Susanne Lingrell; Daniel A. Bachovchin; Brian Bierie; Verena Tischler; Aurelia Noske; Marian C. Okondo; Ferenc Reinhardt; Prathapan Thiru; Todd R. Golub; Jean E. Vance; Robert A. Weinberg

Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.


Cell | 2017

mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient

Gregory A. Wyant; Monther Abu-Remaileh; Rachel L. Wolfson; Walter W. Chen; Elizaveta Freinkman; Laura V. Danai; Matthew G. Vander Heiden; David M. Sabatini

The mTORC1 kinase is a master growth regulator that senses many environmental cues, including amino acids. Activation of mTORC1 by arginine requires SLC38A9, a poorly understood lysosomal membrane protein with homology to amino acid transporters. Here, we validate that SLC38A9 is an arginine sensor for the mTORC1 pathway, and we uncover an unexpectedly central role for SLC38A9 in amino acid homeostasis. SLC38A9 mediates the transport, in an arginine-regulated fashion, of many essential amino acids out of lysosomes, including leucine, which mTORC1 senses through the cytosolic Sestrin proteins. SLC38A9 is necessary for leucine generated via lysosomal proteolysis to exit lysosomes and activate mTORC1. Pancreatic cancer cells, which use macropinocytosed protein as a nutrient source, require SLC38A9 to form tumors. Thus, through SLC38A9, arginine serves as a lysosomal messenger that couples mTORC1 activation to the release from lysosomes of the essential amino acids needed to drive cell growth.

Collaboration


Dive into the Elizaveta Freinkman's collaboration.

Top Co-Authors

Avatar

David M. Sabatini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Walter W. Chen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew G. Vander Heiden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monther Abu-Remaileh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Caroline A. Lewis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason R. Cantor

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naama Kanarek

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge