Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew G. Vander Heiden is active.

Publication


Featured researches published by Matthew G. Vander Heiden.


Science | 2009

Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation

Matthew G. Vander Heiden; Lewis C. Cantley; Craig B. Thompson

Fuel Economy for Growing Cells Sophisticated 21st-century analyses of the signaling pathways that control cell growth have led researchers back to the seminal work of Otto Warburg, who discovered in the 1920s that tumor cells generate their energy in an unusual way—by switching from mitochondrial respiration to glycolysis. The advantage conferred by this metabolic switch is puzzling because mitochondrial respiration is a more efficient way to produce ATP. Vander Heiden et al. (p. 1029) review arguments that rapidly growing cells have critical metabolic requirements that extend beyond ATP and that a better understanding of these requirements may shed new light on the “Warburg effect” and ultimately lead to new therapies for cancer. In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.


Nature | 2009

Cancer-associated IDH1 mutations produce 2-hydroxyglutarate

Lenny Dang; David W. White; Stefan Gross; Bryson D. Bennett; Mark A. Bittinger; Edward M. Driggers; Valeria Fantin; Hyun Gyung Jang; Shengfang Jin; Marie C. Keenan; Kevin Marks; Robert M. Prins; Patrick S. Ward; Katharine E. Yen; Linda M. Liau; Joshua D. Rabinowitz; Lewis C. Cantley; Craig B. Thompson; Matthew G. Vander Heiden; Shinsan M. Su

Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme’s ability to catalyse conversion of isocitrate to α-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert α-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.


Nature | 2008

The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth

Heather R. Christofk; Matthew G. Vander Heiden; Marian H. Harris; Arvind Ramanathan; Robert E. Gerszten; Ru Wei; Mark D. Fleming; Stuart L. Schreiber; Lewis C. Cantley

Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.


Cell | 1997

Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria

Matthew G. Vander Heiden; Navdeep S. Chandel; Edward K. Williamson; Paul T. Schumacker; Craig B. Thompson

Mitochondrial physiology is disrupted in either apoptosis or necrosis. Here, we report that a wide variety of apoptotic and necrotic stimuli induce progressive mitochondrial swelling and outer mitochondrial membrane rupture. Discontinuity of the outer mitochondrial membrane results in cytochrome c redistribution from the intermembrane space to the cytosol followed by subsequent inner mitochondrial membrane depolarization. The mitochondrial membrane protein Bcl-xL can inhibit these changes in cells treated with apoptotic stimuli. In addition, Bcl-xL-expressing cells adapt to growth factor withdrawal or staurosporine treatment by maintaining a decreased mitochondrial membrane potential. Bcl-xL expression also prevents mitochondrial swelling in response to agents that inhibit oxidative phosphorylation. These data suggest that Bcl-xL promotes cell survival by regulating the electrical and osmotic homeostasis of mitochondria.


Annual Review of Cell and Developmental Biology | 2011

Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation

Sophia Y. Lunt; Matthew G. Vander Heiden

Warburgs observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which suggests it may play a fundamental role in supporting cell growth. Here, we review how glycolysis contributes to the metabolic processes of dividing cells. We provide a detailed accounting of the biosynthetic requirements to construct a new cell and illustrate the importance of glycolysis in providing carbons to generate biomass. We argue that the major function of aerobic glycolysis is to maintain high levels of glycolytic intermediates to support anabolic reactions in cells, thus providing an explanation for why increased glucose metabolism is selected for in proliferating cells throughout nature.


Molecular Cell | 2010

Activation of a metabolic gene regulatory network downstream of mTOR complex 1.

Katrin Düvel; Jessica L. Yecies; Suchithra Menon; Pichai Raman; Alex I. Lipovsky; Amanda Souza; Ellen Triantafellow; Qicheng Ma; Regina Gorski; Stephen Cleaver; Matthew G. Vander Heiden; Jeffrey P. MacKeigan; Peter Finan; Clary B. Clish; Leon O. Murphy; Brendan D. Manning

Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.


Nature | 2012

Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia

Christian M. Metallo; Paulo A. Gameiro; Eric L. Bell; Katherine R. Mattaini; Juanjuan Yang; Karsten Hiller; Christopher M. Jewell; Zachary R. Johnson; Darrell J. Irvine; Leonard Guarente; Joanne K. Kelleher; Matthew G. Vander Heiden; Othon Iliopoulos; Gregory Stephanopoulos

Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel–Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.


Nature | 2008

Pyruvate kinase M2 is a phosphotyrosine-binding protein.

Heather R. Christofk; Matthew G. Vander Heiden; Ning Wu; John M. Asara; Lewis C. Cantley

Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.


Science | 2011

Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses

Dimitrios Anastasiou; George Poulogiannis; John M. Asara; Matthew B. Boxer; Jian-kang Jiang; Min Shen; Gary Bellinger; Atsuo T. Sasaki; Jason W. Locasale; Douglas S. Auld; Craig J. Thomas; Matthew G. Vander Heiden; Lewis C. Cantley

The glycolytic metabolism of cancers differs from normal tissues, allowing tumor cells to survive under oxidative stress. Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.


Nature Genetics | 2011

Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

Jason W. Locasale; Alexandra R. Grassian; Tamar Melman; Costas A. Lyssiotis; Katherine R. Mattaini; Adam J. Bass; Gregory J. Heffron; Christian M. Metallo; Taru A. Muranen; Hadar Sharfi; Atsuo T. Sasaki; Dimitrios Anastasiou; Edouard Mullarky; Natalie I. Vokes; Mika Sasaki; Rameen Beroukhim; Gregory Stephanopoulos; Azra H. Ligon; Matthew Meyerson; Andrea L. Richardson; Lynda Chin; Gerhard Wagner; John M. Asara; Joan S. Brugge; Lewis C. Cantley; Matthew G. Vander Heiden

Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.

Collaboration


Dive into the Matthew G. Vander Heiden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig J. Thomas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Boxer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Henrike Veith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William J. Israelsen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas S. Auld

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyle R. Brimacombe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn M. Davidson

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge