Elke Binot
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elke Binot.
Modern Pathology | 2012
Hans-Ulrich Schildhaus; Lukas C. Heukamp; Sabine Merkelbach-Bruse; Katharina Riesner; Katja Schmitz; Elke Binot; Ellen Paggen; Kerstin Albus; Wolfgang Schulte; Yon-Dschun Ko; Andreas Schlesinger; Sascha Ansén; Walburga Engel-Riedel; Michael Brockmann; Monika Serke; Ulrich Gerigk; Sebastian Huss; Friederike Göke; Sven Perner; Khosro Hekmat; Konrad Frank; Marcel Reiser; Roland Schnell; Marc Bos; Christian Mattonet; Martin L. Sos; Erich Stoelben; Jürgen Wolf; Thomas Zander; Reinhard Buettner
We recently reported fibroblast growth factor receptor-type 1 (FGFR1) amplification to be associated with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. This makes FGFR1 a novel target for directed therapy in these tumors. To reproducibly identify patients for clinical studies, we developed a standardized reading and evaluation strategy for FGFR1 fluorescence in-situ hybridization (FISH) and propose evaluation criteria, describe different patterns of low- and high-level amplifications and report on the prevalence of FGFR1 amplifications in pulmonary carcinomas. A total of 420 lung cancer patients including 307 squamous carcinomas, 100 adenocarcinomas of the lung and 13 carcinomas of other types were analyzed for FGFR1 amplification using a dual color FISH. We found heterogeneous and different patterns of gene copy numbers. FGFR1 amplifications were observed in 20% of pulmonary squamous carcinomas but not in adenocarcinomas. High-level amplification (as defined by an FGFR1/centromer 8 (CEN8) ratio ≥2.0, or average number of FGFR1 signals per tumor cell nucleus ≥6, or the percentage of tumor cells containing ≥15 FGFR1 signals or large clusters ≥10%) was detected at a frequency of 16% and low-level amplification (as defined by ≥5 FGFR1 signals in ≥50% of tumor cells) at a frequency of 4%. We conclude that FGFR1 amplification is one of the most frequent therapeutically tractable genetic lesions in pulmonary carcinomas. Standardized reporting of FGFR1 amplification in squamous carcinomas of the lung will become increasingly important to correlate therapeutic responses with FGFR1 inhibitors in clinical studies. Thus, our reading and evaluation strategy might serve as a basis for identifying patients for ongoing and upcoming clinical trials.
Histopathology | 2013
Sebastian Huss; Julia Nehles; Elke Binot; Eva Wardelmann; Jens Mittler; Michaela Angelika Kleine; Helen Künstlinger; Wolfgang Hartmann; Peter Hohenberger; Sabine Merkelbach-Bruse; Reinhard Buettner; Hans-Ulrich Schildhaus
Aims and methods: Desmoid‐type fibromatosis (desmoid) is a fibroblastic tumour that shows locally aggressive growth. Mesenteric desmoid is a rare lesion that shares morphological and biological features with fibromatoses occurring in the abdominal wall or in extraabdominal sites, but differs in terms of gross appearance and clinical presentation. We report on a series of 56 cases of mesenteric desmoids from our consultation files and compare them with cases of non‐mesenteric desmoids and retroperitoneal fibrosis.
Clinical Cancer Research | 2015
Hans-Ulrich Schildhaus; Anne M. Schultheis; Josef Rüschoff; Elke Binot; Sabine Merkelbach-Bruse; Jana Fassunke; Wolfgang Schulte; Yon-Dschun Ko; Andreas Schlesinger; Marc Bos; Masyar Gardizi; Walburga Engel-Riedel; Michael Brockmann; Monika Serke; UIlrich Gerigk; Khosro Hekmat; Konrad Frank; Marcel Reiser; Holger Schulz; Stefan Krüger; Erich Stoelben; Thomas Zander; Jürgen Wolf; Reinhard Buettner
Purpose: MET is a potential therapeutic target in lung cancer and both MET tyrosine kinase inhibitors and monoclonal antibodies have entered clinical trials. MET signaling can be activated by various mechanisms, including gene amplification. In this study, we aimed to investigate MET amplification status in adeno- and squamous cell carcinomas of the lung. We propose clearly defined amplification scores and provide epidemiologic data on MET amplification in lung cancer. Experimental Design: We evaluated the prevalence of increased MET gene copy numbers in 693 treatment-naïve cancers by FISH, defined clear cutoff criteria, and correlated FISH results to MET IHC. Results: Two thirds (67%) of lung cancers do not have gains in MET gene copy numbers, whereas 3% show a clear-cut high-level amplification (MET/centromer7 ratio ≥2.0 or average gene copy number per nucleus ≥6.0 or ≥10% of tumor cells containing ≥15 MET copies). The remaining cases can be subdivided into intermediate- (6%) and low-level gains (24%). Importantly, MET amplifications occur at equal frequencies in squamous and adenocarcinomas without or with EGFR or KRAS mutations. Conclusion: MET amplification is not a mutually exclusive genetic event in therapy-naïve non–small cell lung cancer. Our data suggest that it might be useful to determine MET amplification (i) before EGFR inhibitor treatment to identify possible primary resistance to anti-EGFR treatment, and (ii) to select cases that harbor KRAS mutations additionally to MET amplification and, thus, may not benefit from MET inhibition. Furthermore, our study provides comprehensive epidemiologic data for upcoming trials with various MET inhibitors. Clin Cancer Res; 21(4); 907–15. ©2014 AACR.
Histopathology | 2012
Sebastian Huss; Eva Wardelmann; Diane Goltz; Elke Binot; Wolfgang Hartmann; Sabine Merkelbach-Bruse; Reinhard Büttner; Hans-Ulrich Schildhaus
Huss S, Wardelmann E, Goltz D, Binot E, Hartmann W, Merkelbach‐Bruse S, Büttner R & Schildhaus H‐U (2012) Histopathology 61, 59–68
Modern Pathology | 2014
Anne M. Schultheis; Marc Bos; Katja Schmitz; Lea Wilsberg; Elke Binot; Jürgen Wolf; Reinhard Büttner; Hans-Ulrich Schildhaus
Small-cell lung cancer (SCLC) comprises about 13–15% of all lung cancers, and more than 29 400 new cases have been diagnosed in the United States in the year 2012. SCLC is a biologically complex tumor typically occurring in heavy smokers. Its medical treatment has almost remained unchanged over the last decades and selected treatment options have not been established so far, mainly due to the lack of targetable genetic alterations. In this study we analyzed a cohort of 307 SCLC samples for fibroblast growth factor receptor 1 (FGFR1) amplification using a dual color FISH probe. FGFR1 status was correlated with clinical data. FGFR1 amplifications were observed in 5.6% of evaluable pulmonary SCLCs. Most of them (93%) fulfilled the criteria for high-level amplification and only one case showed low-level amplification. Amplification patterns were homogenous in the entire tumor area without occurrence of any ‘hot spot’ areas. FGFR1 amplification status was not associated with age, sex, stage, smoking status or overall survival. FGFR1 amplification analysis by FISH analysis in SCLC is, under respect of certain technical issues, applicable in the routine clinical setting. However, the FGFR1 amplification patterns in SCLC differs strongly from the previously described FGFR1 amplification pattern in squamous cell carcinoma of the lung, as positive SCLC harbor mostly homogeneous high-level amplifications. We provide evidence that an estimated number of 1640 newly diagnosed FGFR1-positive SCLC cases in the United States annually could benefit from targeted therapy. Therefore, we recommend including SCLC in the screening for ongoing clinical trials with FGFR1 inhibitors.
The American Journal of Surgical Pathology | 2013
Helen Künstlinger; Sebastian Huss; Sabine Merkelbach-Bruse; Elke Binot; Michaela Angelika Kleine; Heike Loeser; Jens Mittler; Wolfgang Hartmann; Peter Hohenberger; Peter Reichardt; Reinhard Büttner; Eva Wardelmann; Hans-Ulrich Schildhaus
KIT exon 9 mutations in gastrointestinal stromal tumors (GISTs) are highly relevant and have direct therapeutic implications. In this context, we established and validated a fast and sensitive high-resolution melting assay. Analyzing 126 primary and 18 metastatic KIT exon 9-mutated cases from our registry, we demonstrate that the mutational spectrum of exon 9 is broader than previously thought and describe 3 novel mutations. Including these cases and the common p.A502_Y503dup mutation, we provide a comprehensive list of all known KIT exon 9 mutations according to the Human Genome Variation Society nomenclature. Two of the newly described mutations were associated with an aggressive phenotype and tumor progression while being treated with 400 mg imatinib, indicating that also GIST with rare exon 9 mutations could be treated with increased imatinib dosage. On the basis of >1500 GISTs from our registry, we have determined the frequency of KIT exon 9 mutations to be 9.2% among all GISTs and 22.5% among small-bowel cases. We describe for the first time that nearly 20% of exon 9-mutated GIST occur in the stomach or rectum. Furthermore, we provide first evidence that exon 9-mutated GISTs metastasize significantly more often to the peritoneum than to the liver. Performing extensive statistical analyses on data from our registry and from the literature, we demonstrate that KIT exon 9 mutations are neither associated with intermediate-risk/high-risk status nor overrepresented among metastatic lesions. Thus, we conclude that exon 9 mutations per se do not have prognostic relevance.
Modern Pathology | 2013
Sebastian Huss; Helen Künstlinger; Eva Wardelmann; Michaela Angelika Kleine; Elke Binot; Sabine Merkelbach-Bruse; Thomas Rüdiger; Jens Mittler; Wolfgang Hartmann; Reinhard Büttner; Hans-Ulrich Schildhaus
About 10–15% of gastrointestinal stromal tumors (GISTs) carry wild-type sequences in all hot spots of KIT and platelet-derived growth factor receptor alpha (PDGFRA) (wt-GISTs). These tumors are currently defined by having no mutations in exons 9, 11, 13, and 17 of the KIT gene and exons 12, 14, and 18 of the PDGFRA gene. Until now, the analysis of further exons is not recommended. However, we have previously published a report on a KIT exon 8 germline mutation, which was associated with familial GIST and mastocytosis. We therefore investigated whether KIT exon 8 mutations might also occur in sporadic GIST. We screened a cohort of 145 wt-GISTs from a total of 1351 cases from our registry for somatic mutations in KIT exon 8. Two primary GISTs with an identical exon 8 mutation (p.D419del) were detected, representing 1.4% of all the cases analyzed. Based on all GISTs from our registry, the overall frequency of KIT exon 8 mutations was 0.15%. The first tumor originating in the small bowel of a 53-year-old male patient had mostly a biphasic spindled-epithelioid pattern with a high proliferative activity (14 mitoses/50 HPF) combined with a second low proliferative spindle cell pattern (4/50 HPF). The patient developed multiple peritoneal metastases 29 months later. The second case represented a jejunal GIST in a 67-year old woman who is relapse-free under adjuvant imatinib treatment. We conclude that about 1–2% of GISTs being classified as ‘wild type’ so far might, in fact, carry KIT mutations in exon 8. Moreover, this mutational subtype was shown to be activating and imatinib sensitive in vitro. We therefore propose that screening for KIT exon 8 mutations should become a routine in the diagnostic work-up of GIST and that patients with an exon 8 mutation and a significant risk for tumor progression should be treated with imatinib.
Modern Pathology | 2013
Hans-Ulrich Schildhaus; Karl-Friedrich Deml; Katja Schmitz; Maren Meiboom; Elke Binot; Sven Hauke; Sabine Merkelbach-Bruse; Reinhard Büttner
Reliable detection of anaplastic lymphoma kinase (ALK) rearrangements is a prerequisite for personalized treatment of lung cancer patients, as ALK rearrangements represent a predictive biomarker for the therapy with specific tyrosine kinase inhibitors. Currently, fluorescent in situ hybridization (FISH) is considered to be the standard method for assessing formalin-fixed and paraffin-embedded tissue for ALK inversions and translocations. However, FISH requires a specialized equipment, the signals fade rapidly and it is difficult to detect overall morphology and tumor heterogeneity. Chromogenic in situ hybridization (CISH) has been successfully introduced as an alternative test for the detection of several genetic aberrations. This study validates a newly developed ALK CISH assay by comparing FISH and CISH signal patterns in lung cancer samples with and without ALK rearrangements. One hundred adenocarcinomas of the lung were included in this study, among them 17 with known ALK rearrangement. FISH and CISH were carried out and evaluated according to the manufacturers’ recommendations. For both assays, tumors were considered positive if ≥15% of tumor cells showed either isolated 3′ signals or break-apart patterns or a combination of both. A subset of tumors was exemplarily examined by using a novel EML4 (echinoderm microtubule-associated protein-like 4) CISH probe. Red, green and fusion CISH signals were clearcut and different signal patterns were easily recognized. The percentage of aberrant tumor cells was statistically highly correlated (P<0.001) between FISH and CISH. On the basis of 86 samples that were evaluable by ALK CISH, we found a 100% sensitivity and 100% specificity of this assay. Furthermore, EML4 rearrangements could be recognized by CISH. CISH is a highly reliable, sensitive and specific method for the detection of ALK gene rearrangements in pulmonary adenocarcinomas. Our results suggest that CISH might serve as a suitable alternative to FISH, which is the current gold standard.
PLOS ONE | 2015
Katja Schmitz; Hartmut Koeppen; Elke Binot; Jana Fassunke; Helen Künstlinger; Michaela Angelika Ihle; Carina Heydt; Eva Wardelmann; Reinhard Büttner; Sabine Merkelbach-Bruse; Josef Rüschoff; Hans-Ulrich Schildhaus
Soft tissue sarcomas are a heterogeneous group of tumors with many different subtypes. In 2014 an estimated 12,020 newly diagnosed cases and 4,740 soft tissue sarcoma related deaths can be expected in the United States. Many soft tissue sarcomas are associated with poor prognosis and therapeutic options are often limited. The evolution of precision medicine has not yet fully reached the clinical treatment of sarcomas since therapeutically tractable genetic changes have not been comprehensively studied so far. We analyzed a total of 484 adult-type malignant mesenchymal tumors by MET fluorescence in situ hybridization and MET and hepatocyte growth factor immunohistochemistry. Eleven different entities were included, among them the most common and clinically relevant subtypes and tumors with specific translocations or complex genetic changes. MET protein expression was observed in 2.6% of the cases, all of which were either undifferentiated pleomorphic sarcomas or angiosarcomas, showing positivity rates of 14% and 17%, respectively. 6% of the tumors showed hepatocyte growth factor overexpression, mainly seen in undifferentiated pleomorphic sarcomas and angiosarcomas, but also in clear cell sarcomas, malignant peripheral nerve sheath tumors, leiomyosarcomas and gastrointestinal stromal tumors. MET and hepatocyte growth factor overexpression were significantly correlated and may suggest an autocrine activation in these tumors. MET FISH amplification and copy number gain were present in 4% of the tumors (15/413). Two samples, both undifferentiated pleomorphic sarcomas, fulfilled the criteria for high level amplification of MET, one undifferentiated pleomorphic sarcoma reached an intermediate level copy number gain, and 12 samples of different subtypes were categorized as low level copy number gains for MET. Our findings indicate that angiosarcomas and undifferentiated pleomorphic sarcomas rather than other frequent adult-type sarcomas should be enrolled in screening programs for clinical trials with MET inhibitors. The screening methods should include both in situ hybridization and immunohistochemistry.
Human Pathology | 2014
Helen Künstlinger; Elke Binot; Sabine Merkelbach-Bruse; Sebastian Huss; Eva Wardelmann; Reinhard Buettner; Hans-Ulrich Schildhaus
The mutational status of KIT and PDGFRA is highly relevant for prognosis and therapy prediction in gastrointestinal stromal tumors (GIST). PDGFRA exon 18 mutations have direct therapeutic implications since it is crucial to distinguish mutations associated with sensitivity to tyrosine kinase inhibitors from those causing primary resistance, eg, the most common exon 18 mutation p.D842V. In response to a growing demand for reliable, faster and more sensitive methods we established and validated a high-resolution melting (HRM) assay for PDGFRA exon 18. A total of 159 GIST samples were comparatively analyzed by HRM and direct Sanger sequencing. We demonstrate that HRM provides highly reliable mutational results with higher sensitivity and shorter time to diagnosis compared to Sanger sequencing. We determined the sensitivity threshold of HRM at 6% of mutated alleles. PDGFRA exon 18 wild-type status and the most common p.D842V resistance mutation (together representing >90% of the cases) can be detected specifically by HRM. Other rare mutations can be pre-screened by HRM and afterwards determined precisely by DNA sequencing. In this way we detected four novel mutations in PDGFRA exon 18, two of which were associated with an aggressive clinical course. Including these new mutations, we provide a comprehensive overview of all 60 currently known subtypes of PDGFRA exon 18 mutations in GIST. Seven of them (accounting for about 75% of all exon 18-mutated GISTs) are reported to be resistant to imatinib. However, there are at least 10 other mutations which are regarded as sensitive to tyrosine kinase inhibitors.