Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elke Dittmann is active.

Publication


Featured researches published by Elke Dittmann.


Chemistry & Biology | 2000

Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system

Daniel Tillett; Elke Dittmann; Marcel Erhard; Hans von Döhren; Thomas Börner; Brett A. Neilan

BACKGROUND Blooms of toxic cyanobacteria (blue-green algae) have become increasingly common in the surface waters of the world. Of the known toxins produced by cyanobacteria, the microcystins are the most significant threat to human and animal health. These cyclic peptides are potent inhibitors of eukaryotic protein phosphatases type 1 and 2A. Synthesized nonribosomally, the microcystins contain a number of unusual amino acid residues including the beta-amino polyketide moiety Adda (3-amino-9-methoxy-2,6, 8-trimethyl-10-phenyl-4,6-decadienoic acid). We have characterized the microcystin biosynthetic gene cluster from Microcystis aeruginosa PCC7806. RESULTS A cluster spanning 55 kb, composed of 10 bidirectionally transcribed open reading frames arranged in two putative operons (mcyA-C and mcyD-J), has been correlated with microcystin formation by gene disruption and mutant analysis. Of the 48 sequential catalytic reactions involved in microcystin synthesis, 45 have been assigned to catalytic domains within six large multienzyme synthases/synthetases (McyA-E, G), which incorporate the precursors phenylacetate, malonyl-CoA, S-adenosyl-L-methionine, glutamate, serine, alanine, leucine, D-methyl-isoaspartate, and arginine. The additional four monofunctional proteins are putatively involved in O-methylation (McyJ), epimerization (McyF), dehydration (McyI), and localization (McyH). The unusual polyketide amino acid Adda is formed by transamination of a polyketide precursor as enzyme-bound intermediate, and not released during the process. CONCLUSIONS This report is the first complete description of the biosynthesis pathway of a complex cyanobacterial metabolite. The enzymatic organization of the microcystin assembly represents an integrated polyketide-peptide biosynthetic pathway with a number of unusual structural and enzymatic features. These include the integrated synthesis of a beta-amino-pentaketide precursor and the formation of beta- and gamma-carboxyl-peptide bonds, respectively. Other features of this complex system also observed in diverse related biosynthetic clusters are integrated C- and N-methyltransferases, an integrated aminotransferase, and an associated O-methyltransferase and a racemase acting on acidic amino acids.


Natural Product Reports | 2013

Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature

Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Molecular Microbiology | 1997

Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806

Elke Dittmann; Brett A. Neilan; Marcel Erhard; Hans von Döhren; Thomas Börner

Several bloom‐forming cyanobacterial genera produce potent inhibitors of eukaryotic protein phosphatases called microcystins. Microcystins are hepatotoxic cyclic heptapeptides and are presumed to be synthesized non‐ribosomally by peptide synthetases. We identified putative peptide synthetase genes in the microcystin‐producing strain Microcystis aeruginosa PCC 7806. Non‐hepatotoxic strains of M. aeruginosa lack these genes. Strain PCC 7806 was transformed to chloramphenicol resistance. The antibiotic resistance cassette insertionally inactivated a peptide synthetase gene of strain PCC 7806 as revealed by Southern hybridization and DNA amplification. This is the first report of genetic transformation and mutation, by homologous recombination, of a bloom‐forming cyanobacterium. Chemical and enzymatic analyses, including high‐performance liquid chromatography (HPLC), mass spectrometry, amino acid activation, and protein phosphatase inhibition, revealed the inability of derived mutant cells to produce any variant of microcystin while maintaining their ability to synthesize other small peptides. The disrupted gene therefore encodes a peptide synthetase (microcystin synthetase) that is specifically involved in the biosynthesis of microcystins. Our results confirm that microcystins are synthesized non‐ribosomally and that a basic difference between toxic and non‐toxic strains of M. aeruginosa is the presence of one or more genes coding for microcystin synthetases.


Applied and Environmental Microbiology | 2000

Light and the transcriptional response of the microcystin biosynthesis gene cluster.

Melanie Kaebernick; Brett A. Neilan; Thomas Börner; Elke Dittmann

ABSTRACT Microcystin, a hepatotoxin known to be the cause of animal and human deaths, is produced by the bloom-forming cyanobacteriumMicrocystis aeruginosa in freshwater bodies worldwide. The toxin is produced nonribosomally via a multifunctional enzyme complex, consisting of both peptide synthetase and polyketide synthase modules coded for by the mcy gene cluster. The recent identification of the mcy genes in the production of microcystin synthetase for the first time provides an avenue to study the regulation of microcystin production at a genetic level. In this study, M. aeruginosa PCC7806 was grown either under continuous light of various intensities or under low light with subsequent short-term exposure to different light intensities and qualities and various stress factors. RNase protection assays were employed to observe the level of mcyB and mcyDtranscription under each condition. Both mcyB andmcyD transcript levels were increased under high light intensities and red light. Blue light and certain artificial stress factors (methylviologen and NaCl) led to reduced transcript amounts. There appeared to be two light thresholds, between dark and low light (16 μmol of photons m−2 s−1), and medium (31 μmol of photons m−2 s−1) and high light (68 μmol of photons m−2 s−1), at which a significant increase in transcription occurred. Our findings show that the effect of light on microcystin synthetase production is due to light quality and is initiated at certain threshold intensities, which are not necessarily reflected by observed intracellular toxin bioactivity.


Journal of Bacteriology | 2003

Microcystin Biosynthesis in Planktothrix: Genes, Evolution, and Manipulation

Guntram Christiansen; Jutta Fastner; Marcel Erhard; Thomas Börner; Elke Dittmann

Microcystins represent an extraordinarily large family of cyclic heptapeptide toxins that are nonribosomally synthesized by various cyanobacteria. Microcystins specifically inhibit the eukaryotic protein phosphatases 1 and 2A. Their outstanding variability makes them particularly useful for studies on the evolution of structure-function relationships in peptide synthetases and their genes. Analyses of microcystin synthetase genes provide valuable clues for the potential and limits of combinatorial biosynthesis. We have sequenced and analyzed 55.6 kb of the potential microcystin synthetase gene (mcy) cluster from the filamentous cyanobacterium Planktothrix agardhii CYA 126. The cluster contains genes for peptide synthetases (mcyABC), polyketide synthases (PKSs; mcyD), chimeric enzymes composed of peptide synthetase and PKS modules (mcyEG), a putative thioesterase (mcyT), a putative ABC transporter (mcyH), and a putative peptide-modifying enzyme (mcyJ). The gene content and arrangement and the sequence of specific domains in the gene products differ from those of the mcy cluster in Microcystis, a unicellular cyanobacterium. The data suggest an evolution of mcy clusters from, rather than to, genes for nodularin (a related pentapeptide) biosynthesis. Our data do not support the idea of horizontal gene transfer of complete mcy gene clusters between the genera. We have established a protocol for stable genetic transformation of Planktothrix, a genus that is characterized by multicellular filaments exhibiting continuous motility. Targeted mutation of mcyJ revealed its function as a gene coding for a O-methyltransferase. The mutant cells produce a novel microcystin variant exhibiting reduced inhibitory activity toward protein phosphatases.


Nature Biotechnology | 2008

Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection

TuAnh Nguyen; Keishi Ishida; Holger Jenke-Kodama; Elke Dittmann; Cristian Gurgui; Thomas Hochmuth; Matthias Platzer; Christian Hertweck; Jörn Piel

Modular polyketide synthases (PKSs) are giant bacterial enzymes that synthesize many polyketides of therapeutic value. In contrast to PKSs that provide acyltransferase (AT) activities in cis, trans-AT PKSs lack integrated AT domains and exhibit unusual enzymatic features with poorly understood functions in polyketide assembly. This has retarded insight into the assembly of products such as mupirocin, leinamycin and bryostatin 1. We show that trans-AT PKSs evolved in a fundamentally different fashion from cis-AT systems, through horizontal recruitment and assembly of substrate-specific ketosynthase (KS) domains. The insights obtained from analysis of these KS mosaics will facilitate both the discovery of novel polyketides by genome mining, as we demonstrate for the thailandamides of Burkholderia thailandensis, and the extraction of chemical information from short trans-AT PCR products, as we show using metagenomic DNA of marine sponges. Our data also suggest new strategies for dissecting polyketide biosynthetic pathways and engineering polyketide assembly.


Microbial Ecology | 2002

Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany).

R. Kurmayer; Elke Dittmann; Jutta Fastner; Ingrid Chorus

In order to find out how many genotypes determine microcystin production of Microcystis spp. in field populations, single colonies (clones) were sampled from Lake Wannsee (Berlin, Germany), characterized morphologically, and subsequently analyzed by PCR for a region within the mcyB gene encoding the activation of one amino acid during microcystin biosynthesis. The different morphospecies varied considerably in the proportion of microcystin-producing genotypes. Most colonies (73%) of M. aeruginosa contained this gene whereas only 16% of the colonies assigned to M. ichthyoblabe and no colonies of M. wesenbergii gave a PCR product of the mcyB gene. Restriction fragment length polymorphism revealed seven restriction profiles showing low variability in nucleotide sequence within each restriction type (0.4-4%) and a low to high variability (1.6-38%) between restriction types. In addition, the sequences of amino acids within the mcyB gene were analyzed to compare the specificity of the amino acid activation during microcystin biosynthesis between restriction types and with the occurrence of amino acids in microcystin variants as detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Most of the microcystin-producing colonies showed high similarity in the sequence of amino acids and contained microcystin-LR (LR refers to leucine and arginine in the variable positions of the heptapeptide), microcystin-RR, and microcystin-YR, as well as other variants in minor concentrations. It is concluded that the gene product found for most of the microcystin-producing colonies in the lake is rather unspecific and the diversity of microcystin variants in the lake results from activation of various amino acids during microcystin biosynthesis in the same genotypes.


PLOS ONE | 2011

The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

Yvonne Zilliges; Jan-Christoph Kehr; Sven Meissner; Keishi Ishida; Stefan Mikkat; Martin Hagemann; Aaron Kaplan; Thomas Börner; Elke Dittmann

Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites.


Environmental Microbiology | 2013

Environmental conditions that influence toxin biosynthesis in cyanobacteria

Brett A. Neilan; Leanne A. Pearson; Julia Muenchhoff; Michelle C. Moffitt; Elke Dittmann

Over the past 15 years, the genetic basis for production of many cyanobacterial bioactive compounds has been described. This knowledge has enabled investigations into the environmental factors that regulate the production of these toxins at the molecular level. Such molecular or systems level studies are also likely to reveal the physiological role of the toxin and contribute to effective water resource management. This review focuses on the environmental regulation of some of the most relevant cyanotoxins, namely the microcystins, nodularin, cylindrospermopsin, saxitoxins, anatoxins and jamaicamides.


Systematic and Applied Microbiology | 2004

Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies.

Lorena Via-Ordorika; Jutta Fastner; Rainer Kurmayer; Michael Hisbergues; Elke Dittmann; Jiri Komarek; Marcel Erhard; Ingrid Chorus

Microcystis is a well-known cyanobacterial genus frequently producing hepatotoxins named microcystins. Toxin production is encoded by microcystin genes (mcy). This study aims (i) to relate the mcy occurrence in individual colonies to the presence of microcystin, (ii) to assess whether morphological characteristics (morphospecies) are related to the occurrence of mcy genes, and (iii) to test whether there are geographical variations in morphospecies specificity and abundance of mcy genes. Individual colonies of nine different European countries were analysed by (1) morphological characteristics, (2) PCR to amplify a gene region within mcyA and mcyB indicative for microcystin biosynthesis, (3) matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to detect microcystins. Almost one hundred percent of the colonies predicted to produce microcystins by PCR analysis were found to contain microcystins. A high similarity in microcystin variants in the different colonies selected from lakes across Europe was demonstrated. The different morphospecies varied in the frequency with which they contained mcy genes. Most colonies (>75%) of M. aeruginosa and M. botrys contained the mcy genes, whereas < or = 20% of the colonies identified as M. ichthyoblabe and M. viridis gave a PCR product of the mcy genes. No colonies of M. wesenbergii gave a PCR product of either mcy gene. In addition, a positive relationship was found between the size of the colony and the frequency of those containing the mcy genes. It is concluded that the analysis of morphospecies is indicative for microcystin production, although the quantitative analysis of microcystin concentrations in water remains indispensable for hazard control.

Collaboration


Dive into the Elke Dittmann's collaboration.

Top Co-Authors

Avatar

Thomas Börner

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Jenke-Kodama

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guntram Christiansen

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge