Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Christoph Kehr is active.

Publication


Featured researches published by Jan-Christoph Kehr.


PLOS ONE | 2011

The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

Yvonne Zilliges; Jan-Christoph Kehr; Sven Meissner; Keishi Ishida; Stefan Mikkat; Martin Hagemann; Aaron Kaplan; Thomas Börner; Elke Dittmann

Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites.


BMC Genomics | 2008

Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

Lionel Frangeul; Philippe Quillardet; Anne Marie Castets; Jean-François Humbert; H.C.P. Matthijs; Diego Cortez; Andrew C. Tolonen; Cheng-Cai Zhang; Simonetta Gribaldo; Jan-Christoph Kehr; Yvonne Zilliges; Nadine Ziemert; Sven Becker; Emmanuel Talla; Amel Latifi; Alain Billault; Anthony Lepelletier; Elke Dittmann; Christiane Bouchier; Nicole Tandeau de Marsac

BackgroundThe colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria.ResultsDeciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes.ConclusionMicrocystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.


Beilstein Journal of Organic Chemistry | 2011

Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes.

Jan-Christoph Kehr; Douglas Gatte Picchi; Elke Dittmann

Summary Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.


Journal of Biological Chemistry | 2010

Microvirin, a Novel α(1,2)-Mannose-specific Lectin Isolated from Microcystis aeruginosa, Has Anti-HIV-1 Activity Comparable with That of Cyanovirin-N but a Much Higher Safety Profile

Dana Huskens; Geoffrey Férir; Kurt Vermeire; Jan-Christoph Kehr; Jan Balzarini; Elke Dittmann; Dominique Schols

Microvirin (MVN), a recently isolated lectin from the cyanobacterium Microcystis aeruginosa PCC7806, shares 33% identity with the potent anti-human immunodeficiency virus (HIV) protein cyanovirin-N (CV-N) isolated from Nostoc ellipsosporum, and both lectins bind to similar carbohydrate structures. MVN is able to inhibit infection by a wide variety of HIV-1 laboratory-adapted strains and clinical isolates of different tropisms and subtypes in peripheral blood mononuclear cells. MVN also inhibits syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T cells and inhibits DC-SIGN-mediated HIV-1 binding and transmission to CD4+ T cells. Long term passaging of HIV-1 exposed to dose-escalating concentrations of MVN resulted in the selection of a mutant virus with four deleted high mannose-type glycans in the envelope gp120. The MVN-resistant virus was still highly sensitive to various other carbohydrate binding lectins (e.g. CV-N, HHA, GNA, and UDA) but not anymore to the carbohydrate-specific 2G12 monoclonal antibody. Importantly, MVN is more than 50-fold less cytotoxic than CV-N. Also in sharp contrast to CV-N, MVN did not increase the level of the activation markers CD25, CD69, and HLA-DR in CD4+ T lymphocytes, and subsequently, MVN did not enhance viral replication in pretreated peripheral blood mononuclear cells. Therefore, MVN may qualify as a useful lectin for potential microbicidal use based on its broad and potent antiviral activity and virtual lack of any stimulatory properties and cellular toxicity.


Journal of Bacteriology | 2008

An Extracellular Glycoprotein Is Implicated in Cell-Cell Contacts in the Toxic Cyanobacterium Microcystis aeruginosa PCC 7806

Yvonne Zilliges; Jan-Christoph Kehr; Stefan Mikkat; Christiane Bouchier; Nicole Tandeau de Marsac; Thomas Börner; Elke Dittmann

Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis aeruginosa; however, the role of the peptide for the producing organism is poorly understood. Differences in the cellular aggregation of M. aeruginosa PCC 7806 and a microcystin-deficient Delta mcyB mutant guided the discovery of a surface-exposed protein that shows increased abundance in PCC 7806 mutants deficient in microcystin production compared to the abundance of this protein in the wild type. Mass spectrometric and immunoblot analyses revealed that the protein, designated microcystin-related protein C (MrpC), is posttranslationally glycosylated, suggesting that it may be a potential target of a putative O-glycosyltransferase of the SPINDLY family encoded downstream of the mrpC gene. Immunofluorescence microscopy detected MrpC at the cell surface, suggesting an involvement of the protein in cellular interactions in strain PCC 7806. Further analyses of field samples of Microcystis demonstrated a strain-specific occurrence of MrpC possibly associated with distinct Microcystis colony types. Our results support the implication of microcystin in the colony specificity of and colony formation by Microcystis.


Life | 2015

Biosynthesis and Function of Extracellular Glycans in Cyanobacteria

Jan-Christoph Kehr; Elke Dittmann

The cell surface of cyanobacteria is covered with glycans that confer versatility and adaptability to a multitude of environmental factors. The complex carbohydrates act as barriers against different types of stress and play a role in intra- as well as inter-species interactions. In this review, we summarize the current knowledge of the chemical composition, biosynthesis and biological function of exo- and lipo-polysaccharides from cyanobacteria and give an overview of sugar-binding lectins characterized from cyanobacteria. We discuss similarities with well-studied enterobacterial systems and highlight the unique features of cyanobacteria. We pay special attention to colony formation and EPS biosynthesis in the bloom-forming cyanobacterium, Microcystis aeruginosa.


Angewandte Chemie | 2014

Harnessing the Evolvability of Tricyclic Microviridins To Dissect Protease–Inhibitor Interactions

Annika R. Weiz; Keishi Ishida; Felix Quitterer; Sabine Meyer; Jan-Christoph Kehr; Kristian M. Müller; Michael Groll; Christian Hertweck; Elke Dittmann

Understanding and controlling proteolysis is an important goal in therapeutic chemistry. Among the natural products specifically inhibiting proteases microviridins are particularly noteworthy. Microviridins are ribosomally produced and posttranslationally modified peptides that are processed into a unique, cagelike architecture. Here, we report a combined rational and random mutagenesis approach that provides fundamental insights into selectivity-conferring moieties of microviridins. The potent variant microviridin J was co-crystallized with trypsin, and for the first time the three-dimensional structure of microviridins was determined and the mode of inhibition revealed.


Environmental Microbiology | 2015

Functional assessment of mycosporine-like amino acids in Microcystis aeruginosa strain PCC 7806.

Chenlin Hu; Ginka H. Völler; Roderich Süßmuth; Elke Dittmann; Jan-Christoph Kehr

The biological role of the widespread mycosporine-like amino acids (MAAs) in cyanobacteria is under debate. Here, we have constructed and characterized two mutants impaired in MAA biosynthesis in the bloom-forming cyanobacterium Microcystis aeruginosa PCC 7806. We could identify shinorine as the sole MAA type of the strain, which is exclusively located in the extracellular matrix. Bioinformatic studies as wells as polymerase chain reaction screening revealed that the ability to produce MAAs is sporadically distributed within the genus. Growth experiments and reactive oxygen species quantification with wild-type and mutant strains did not support a role of shinorine in protection against UV or other stress conditions in M. aeruginosa PCC 7806. The shinorine content per dry weight of cells as well as transcription of the mys gene cluster was not significantly elevated in response to UV-A, UV-B or any other stress condition tested. Remarkably, both mutants exhibited pronounced morphological changes compared with the wild type. We observed an increased accumulation and an enhanced hydrophobicity of the extracellular matrix. Our study suggests that MAAs in Microcystis play a negligible role in protection against UV radiation but might be a strain-specific trait involved in extracellular matrix formation and cell-cell interaction.


ChemBioChem | 2017

PREREQUISITES OF ISOPEPTIDE BOND FORMATION IN MICROCYSTIN BIOSYNTHESIS

Sabine Meyer; Andi Mainz; Jan-Christoph Kehr; Roderich D. Süssmuth; Elke Dittmann

The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d‐glutamate and β‐methyl d‐aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE‐A and McyB‐A2, either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond‐forming modules incorporating d‐glutamate or d‐aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.


Biospektrum | 2013

Cyanobakterielle Toxine — von der Biosynthese zur Funktion

Elke Dittmann; Jan-Christoph Kehr

Cyanobacteria are infamous for the production of potent toxins, among them the widespread hepatotoxins microcystin and nodularin. The recent assignment of biosynthetic pathways to these cyclic peptides has allowed detailed investigations into evolution, regulation, and function of these toxins. Knowledge on the biosynthetic genes provides a basis for the advancement of detection techniques for toxic cyanobacteria. Inter — disciplinary approaches support the idea of an important intracellular role of the toxin in oxidative stress acclimation and low inorganic carbon adaptation.

Collaboration


Dive into the Jan-Christoph Kehr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Zilliges

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Andi Mainz

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Groll

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar

Roderich D. Süssmuth

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge