Elke Lipka
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elke Lipka.
Journal of Pharmaceutical Sciences | 2000
Constanze Hilgendorf; Hildegard Spahn-Langguth; Carl Gunnar Regårdh; Elke Lipka; Gordon L. Amidon; Peter Langguth
PURPOSE The objective of this study was a systematic characterization and evaluation of cell culture models based on mixtures of Caco-2/HT29-MTX co-cultures for their use in screening for drug absorption and intestinal permeability in comparison to the properties of the respective mono-cultures. METHODS Co-cultures of Caco-2 cells (absorptive-type) and HT29-MTX cells (goblet-type) were set up. Three different co-cultures (initial seeding ratios Caco-2/HT29-MTX: 90/10, 70/30, and 50/50) were grown on permeable filter supports, and monolayers were used for permeability studies with model compounds for paracellular absorption (atenolol, furosemide, H334/75, mannitol, terbutaline), transcellular absorption (antipyrine, ketoprofen, metoprolol, piroxicam), carrier-mediated absorption (D-glucose, Gly-Pro, and L-phenylalanine) as well as substrates for carrier-mediated secretion via P-glycoprotein (cimetidine and talinolol). Electrophysiological and microscopic controls were performed to characterize the cell cultures. RESULTS For compounds undergoing passive intestinal absorption permeabilities were generally higher in co-cultures than in Caco-2 monolayers, yielding highest values in pure HT29-MTX monolayers. This difference was most obvious for compounds transported via the paracellular pathway, where HT29-MTX cells may be up to 30 times more permeable than Caco-2 cells, whereas for lipophilic and highly permeable compounds, the difference in permeability values was less obvious. For drugs undergoing intestinal secretion mediated by P-glycoprotein, co-cultivation of Caco-2 cells with HT29-MTX cells led to increased apical to basolateral permeability which was decreased in the opposite direction, consistent with the fact that HT29-MTX cells do not express P-glycoprotein. When a carrier-mediated absorption mechanism is involved, the permeabilities observed were lower than the values reported for human small intestine and co-cultivation of HT29-MTX cells with Caco-2 cells resulted in even lower values as compared to the plain Caco-2 cultures. CONCLUSIONS Co-cultures of HT29-MTX and Caco-2 cells offer the opportunity of modifying the permeability barrier of the cell monolayers both with respect to paracellular resistance and secretory transport via P-gp. Thus, in special cases, they allow more flexibility in adapting the in vitro system to the in vivo situation as compared to the monocultures. Another advantage is the obvious robustness of the method with respect to the reproducibility of the results. A problem remaining, however, is the quantitative expression of carriers involved in intestinal uptake of many nutrients and drugs.
Advanced Drug Delivery Reviews | 1996
Lawrence X. Yu; Elke Lipka; John R. Crison; Gordon L. Amidon
For almost a half century scientists have striven to develop a theoretical model capable of predicting oral drug absorption in humans. From the pH-partition hypothesis to the compartmental absorption and transit (CAT) model, various qualitative/quantitative approaches have been proposed, revised and extended. In this review, these models are classified into three categories; quasi-equilibrium models, steady-state models and dynamic models. The quasi-equilibrium models include the pH-partition hypothesis and the absorption potential concept, the steady-state models include the film model and the mass balance approaches, and the dynamic models include the dispersion, mixing tank and CAT models. The quasi-equilibrium models generally provide a basic guideline for understanding drug absorption trends. The steady-state models can be used to estimate the fraction of dose absorbed. The dynamic models predict both the fraction of dose absorbed and the rate of drug absorption and can be related to pharmacokinetic models to evaluate plasma concentration profiles.
Journal of Controlled Release | 1999
Elke Lipka; Gordon L. Amidon
The recently proposed Biopharmaceutics Classification System can be used to classify drugs and set standards for scale-up and post-approval changes as well as standards for in vitro/in vivo correlation for immediate and controlled release products. This classification scheme is based on determining the underlying process that is controlling the drug absorption rate and extent, namely, drug solubility and intestinal membrane permeability. Theoretical analysis and experimental results suggest that a permeability/solubility classification scheme can be used to set more rationale drug standards. In particular, high solubility/high permeability, rapidly dissolving drugs may be regulated on the basis of a single point rapid dissolution test while low solubility dissolution rate limited drugs can be regulated based on an in vitro dissolution test that reflects the in vivo dissolution process. This dissolution test may include multiple time points, media change, as well as surfactants in order to reflect the in vivo dissolution process and would be used by the manufacturer for requesting a waiver from a bioequivalence (BE) trial. For controlled release products, the regulation of bioequivalence standards is more complex due to the potential differences in position-dependent permeability/solubility and metabolism of drugs along the gastrointestinal tract. These differences may result in drug absorption rates that are highly transit time dependent. This paper will present the current status of the biopharmaceutic drug classification scheme, the underlying developed data base and its application to optimizing IR and CR products.
Journal of Controlled Release | 1996
Elke Lipka; John R. Crison; Gordon L. Amidon
Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.
Journal of Pharmacokinetics and Biopharmaceutics | 1995
Elke Lipka; I-Der Lee; Peter Langguth; Hildegard Spahn-Langguth; Ernst Mutschler; Gordon L. Amidon
Investigation of the underlying mechanism leading to inter- and intrasubject variations in the plasma concentration-time profiles of drugs (1) can considerably benefit rational drug therapy. The significant effect of gastric emptying on the rate and extent of celiprolol absorption and its role with respect to double-peak formation was demonstrated in the present study. In four dogs racemic celiprolol was dosed perorally in a crossover design during four different phases of the fasted-state gastric cycle and gastric motility was recorded simultaneously using a manometric measurement system. Intravenous doses were also given to obtain disposition and bioavailability parameters. The blood samples were assayed by a stereoselective HPLC method (2). The time to onset of the active phase of the gastric cycle showed an excellent correlation with the time to celiprolol peak concentration. Furthermore, bioavailability was increased when celiprolol was administered during the active phase. Double peaks were observed when the first active phase was relatively short, suggesting that a portion of the drug remained in the stomach until the next active phase. Population pharmacokinetic modeling of the data with a two-compartment open model with two lag times incorporating the motility data confirmed the effect of time to gastric empyting on the variability of the oral pharmacokinetics of celiprolol. The fasted-state motility phases determine the rate and extent of celiprolol absorption and influence the occurrence of double peaks. Peak plasma levels of celiprolol exhibit less variability if lag times, and therefore gastric emptying times, are taken into consideration.
Pharmaceutical Research | 2001
Narushi Takamatsu; Ok Nam Kim; Lynda S. Welage; Nasir M. Idkaidek; Yayoi Hayashi; Jeffrey L. Barnett; Ryuzo Yamamoto; Elke Lipka; Hans Lennernäs; Lawrence J. Lesko; Gordon L. Amidon
AbstractPurpose. To determine the human jejunal permeability of cimetidine and ranitidine using a regional jejunal perfusion approach, and to integrate such determinations with previous efforts to establish a baseline correlation between permeability and fraction dose absorbed in humans for soluble drugs. Methods. A sterile multi-channel perfusion tube, Loc-I-Gut®, was inserted orally and positioned in the proximal region of the jejunum. A solution containing cimetidine or ranitidine and phenylalanine, propranolol, PEG 400, and PEG 4000 was perfused through a 10 cm jejunal segment in 6 and 8 subjects, respectively. Results. The mean Peff (± se) of cimetidine and ranitidine averaged over both phases were 0.30 (0.045) and 0.27 (0.062) × 10−4cm/s, respectively, and the differences between the two were found to be statistically insignificant. The mean permeabilities for propranolol, phenylalanine, and PEG 400 averaged over both phases and studies were 3.88 (0.72), 3.36 (0.50), and 0.56 (0.08) × 10−4 cm/s, respectively. The differences in permeability for a given marker were not significant between phases or between the two studies. Conclusions. The 10-fold lower permeabilities found for cimetidine and ranitidine in this study, compared to propranolol and phenylalanine, appear to be consistent with their less than complete absorption in humans.
Pharmaceutical Research | 1998
Helena R. Axelrod; Jae Seung Kim; Clifford B. Longley; Elke Lipka; Gordon L. Amidon; Ramesh Kakarla; Y. W. Hui; Steven J. Weber; Sally Y. Choe; Michael J. Sofia
AbstractPurpose. The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. Methods. Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. Results. The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal or jejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. Conclusions. TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.
European Journal of Pharmaceutical Sciences | 1998
Elke Lipka; Hildegard Spahn-Langguth; Ernst Mutschler; Gordon L. Amidon
The objective of this study was to investigate the absorption mechanism of celiprolol as a potential source of the drugs non-linear oral pharmacokinetics by determining its intestinal permeability as a function of concentration in vivo in dogs. Solutions of different celiprolol concentrations containing propranolol as an internal absorption marker were perfused through an isolated jejunal segment and samples were analyzed by an enantioselective HPLC method (Hartmann et al., J. Chromatogr., 496 (1989) 387-396). Permeability (P(eff) x 10(4) cm/s) of celiprolol increased significantly from 1.9-2.1 for the lower concentrations to 3.2 for the highest concentration, while the variability decreased. No statistical differences in the uptake between the two enantiomers were observed. Permeability of propranolol also increased significantly with increasing celiprolol concentrations, suggesting that propranolol might be utilizing the same carrier protein. In conclusion, the non-linear and variable oral pharmacokinetics of celiprolol might be due to a non-linear saturable, possibly secretion component in its uptake mechanism.
Journal of Pharmaceutical Sciences | 2016
Tuba Incecayir; Jing Sun; Yasuhiro Tsume; Hao Xu; Tomoka Gose; Takeo Nakanishi; Ikumi Tamai; John M. Hilfinger; Elke Lipka; Gordon L. Amidon
The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier-mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylene-dioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1, and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about 2 times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a 9 times-enhanced apparent permeability (P(app)) in Caco-2 cells compared with the parent drug. Both diastereomer exhibited high effective permeability (P(eff)) in mice, 6.32 ± 3.12 and 5.20 ± 2.81 × 10(-5) cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val, seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs before absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells.
Chemia Analityczna | 1997
Peter Langguth; Gordon L. Amidon; Elke Lipka; Hildegard Spahn-Langguth