Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elke Ueberham is active.

Publication


Featured researches published by Elke Ueberham.


Gastroenterology | 2008

Hepatocyte-Specific Smad7 Expression Attenuates TGF-β–Mediated Fibrogenesis and Protects Against Liver Damage

Steven Dooley; Jafar Hamzavi; L. Ciuclan; Patricio Godoy; Iryna Ilkavets; Sabrina Ehnert; Elke Ueberham; Rolf Gebhardt; Stephan Kanzler; Andreas Geier; Katja Breitkopf; Honglei Weng; Peter R. Mertens

BACKGROUND & AIMS The profibrogenic role of transforming growth factor (TGF)-beta in liver has mostly been attributed to hepatic stellate cell activation and excess matrix synthesis. Hepatocytes are believed to contribute to increased rates of apoptosis. METHODS Primary hepatocyte outgrowths and AML12 cells were used as an in vitro model to detect TGF-beta effects on the cellular phenotype and expression profile. Furthermore, a transgenic mouse model was used to determine the outcome of hepatocyte-specific Smad7 expression on fibrogenesis following CCl(4)-dependent damage. Samples from patients with chronic liver diseases were assessed for (partial) epithelial-to-mesenchymal transition (EMT) in hepatocytes. RESULTS In primary cell cultures and in vivo, the majority of hepatocytes survive despite activated TGF-beta signaling. These cells display phenotypic changes and express proteins characteristic for (partial) EMT and fibrogenesis. Experimental expression of Smad7 in hepatocytes of mice attenuated TGF-beta signaling and EMT, resulted in less accumulation of interstitial collagens, and improved CCl(4)-provoked liver damage and fibrosis scores compared with controls. CONCLUSIONS The data indicate that hepatocytes undergo TGF-beta-dependent EMT-like phenotypic changes and actively participate in fibrogenesis. Furthermore, ablation of TGF-beta signaling specifically in this cell type is sufficient to blunt the fibrogenic response.


Journal of Proteome Research | 2012

Tissue proteomics by one-dimensional gel electrophoresis combined with label-free protein quantification.

Andrej Vasilj; Marc Gentzel; Elke Ueberham; Rolf Gebhardt; Andrej Shevchenko

Label-free methods streamline quantitative proteomics of tissues by alleviating the need for metabolic labeling of proteins with stable isotopes. Here we detail and implement solutions to common problems in label-free data processing geared toward tissue proteomics by one-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectrometry (geLC MS/MS). Our quantification pipeline showed high levels of performance in terms of duplicate reproducibility, linear dynamic range, and number of proteins identified and quantified. When applied to the liver of an adenomatous polyposis coli (APC) knockout mouse, we demonstrated an 8-fold increase in the number of statistically significant changing proteins compared to alternative approaches, including many more previously unidentified hydrophobic proteins. Better proteome coverage and quantification accuracy revealed molecular details of the perturbed energy metabolism.


mAbs | 2014

Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: A novel approach to generate tumor cell specific human antibodies

Anja K. Wege; Marcus Schmidt; Elke Ueberham; Marvin Ponnath; Olaf Ortmann; Gero Brockhoff; Jörg Lehmann

Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy.


Food Chemistry | 2016

Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate

P. Meinlschmidt; Elke Ueberham; Jörg Lehmann; Ute Schweiggert-Weisz; Peter Eisner

The effect of induced liquid state fermentation (Bacillus subtilis, Rhizopus oryzae, Saccharomyces cerevisiae, Lactobacillus helveticus) on the immunoreactivity, physicochemical and sensory properties of soy protein isolate (SPI) was studied. L. helveticus revealed the most abundant reduction in terms of immunoreactivity within soluble protein fractions, up to 100%, which could be measured by in vitro sandwich ELISA using mouse monoclonal anti-Glym5 antibodies (mAbs). Almost no binding was found in western blot analysis using mouse monoclonal mAbs and sera from soy sensitive individuals. Fermentation increased water- and oil-binding capacity as well as protein solubility at pH 4.0. Foaming activity was nearly doubled compared to non-fermented SPI. A decreased emulsifying capacity, foaming density, and quantity of soluble proteins at pH 7.0 were observed. Principal component analysis (PCA) confirmed decreased bitter and beany off-flavors of fermented samples compared to non-fermented SPI. Consequently, fermentation might be a promising method to produce tasty low-allergen food ingredients with good physicochemical properties.


Neuropathology and Applied Neurobiology | 2014

Pin1 promotes degradation of Smad proteins and their interaction with phosphorylated tau in Alzheimer's disease.

Uwe Ueberham; Susanne Rohn; Elke Ueberham; Susanne Wodischeck; Isabel Hilbrich; Max Holzer; Martina K. Brückner; Hildegard Gruschka; Thomas Arendt

Neurodegeneration in Alzheimers disease (AD) is characterized by pathological protein aggregates and inadequate activation of cell cycle regulating proteins. Recently, Smad proteins were identified to control the expression of AD relevant proteins such as APP, CDK4 and CDK inhibitors, both critical regulators of cell cycle activation. This might indicate a central role for Smads in AD pathology where they show a substantial deficiency and disturbed subcellular distribution in neurones. Still, the mechanisms driving relocation and decrease of neuronal Smad in AD are not well understood. However, Pin1, a peptidyl‐prolyl‐cis/trans‐isomerase, which allows isomerization of tau protein, was recently identified also controlling the fate of Smads. Here we analyse a possible role of Pin1 for Smad disturbances in AD.


Biotechnology Journal | 2017

Combination of two epitope identification techniques enables the rational design of soy allergen Gly m 4 mutants

Heide Havenith; Karolin Kern; Paul Rautenberger; Holger Spiegel; Michael Szardenings; Elke Ueberham; Jörg Lehmann; Matthias Buntru; Simon Vogel; R. Treudler; Rainer Fischer; Stefan Schillberg

Detailed IgE-binding epitope analysis is a key requirement for the understanding and development of diagnostic and therapeutic agents to address food allergies. An IgE-specific linear peptide microarray with random phage peptide display for the high-resolution mapping of IgE-binding epitopes of the major soybean allergen Gly m 4, which is a homologue to the birch pollen allergen Bet v 1 is combined. Three epitopes are identified and mapped to a resolution of four key amino acids, allowing the rational design and the production of three Gly m 4 mutants with the aim to abolish or reduce the binding of epitope-specific IgE. In ELISA, the binding of the mutant allergens to polyclonal rabbit-anti Gly m 4 serum as well as IgE purified from Gly m 4-reactive soybean allergy patient sera is reduced by up to 63% compared to the wild-type allergen. Basophil stimulation experiments using RBL-SX38 cells loaded with patient IgE are showed a decreased stimulation from 25% for the wild-type Gly m 4 to 13% for one mutant. The presented approach demonstrates the feasibility of precise mapping of allergy-related IgE-binding epitopes, allowing the rational design of less allergenic mutants as potential therapeutic agents.


Molecular Cancer Research | 2015

Global Increase of p16INK4a in APC-Deficient Mouse Liver Drives Clonal Growth of p16INK4a-Negative Tumors

Elke Ueberham; Pia Glöckner; Claudia Göhler; Beate K. Straub; Daniel Teupser; Kai Schönig; Albert Braeuning; Anne Kathrin Höhn; Boris Jerchow; Walter Birchmeier; Frank Gaunitz; Thomas Arendt; Owen J. Sansom; Rolf Gebhardt; Uwe Ueberham

Reduction of β-catenin (CTNNB1) destroying complex components, for example, adenomatous polyposis coli (APC), induces β-catenin signaling and subsequently triggers activation of genes involved in proliferation and tumorigenesis. Though diminished expression of APC has organ-specific and threshold-dependent influence on the development of liver tumors in mice, the molecular basis is poorly understood. Therefore, a detailed investigation was conducted to determine the underlying mechanism in the development of liver tumors under reduced APC levels. Mouse liver at different developmental stages was analyzed in terms of β-catenin target genes including Cyp2e1, Glul, and Ihh using real-time RT-PCR, reporter gene assays, and immunohistologic methods with consideration of liver zonation. Data from human livers with mutations in APC derived from patients with familial adenomatous polyposis (FAP) were also included. Hepatocyte senescence was investigated by determining p16INK4a expression level, presence of senescence-associated β-galactosidase activity, and assessing ploidy. A β-catenin activation of hepatocytes does not always result in β-catenin positive but unexpectedly also in mixed and β-catenin–negative tumors. In summary, a senescence-inducing program was found in hepatocytes with increased β-catenin levels and a positive selection of hepatocytes lacking p16INK4a, by epigenetic silencing, drives the development of liver tumors in mice with reduced APC expression (Apc580S mice). The lack of p16INK4a was also detected in liver tumors of mice with triggers other than APC reduction. Implications: Epigenetic silencing of p16Ink4a in selected liver cells bypassing senescence is a general principle for development of liver tumors with β-catenin involvement in mice independent of the initial stimulus. Mol Cancer Res; 13(2); 239–49. ©2014 AACR.


BMC Veterinary Research | 2017

Immunogenic potential of a Salmonella Typhimurium live vaccine for pigs against monophasic Salmonella Typhimurium DT 193

Tobias Theuß; Elke Ueberham; Jörg Lehmann; Thomas Lindner; Sven Springer

BackgroundMonophasic Salmonella Typhimurium (mSTM) strains account for up to 8.6% of all human Salmonellosis cases. They have an increasing prevalence during recent years and several human cases with hospitalisation were reported. These strains are often isolated from pigs and pork - one primary source of human infection. A Salmonella Typhimurium (STM) live vaccine has been proven successful in controlling of STM infections in pigs for many years. The aim of this study was to test the immunogenicity of the vaccine in weaners during oral challenge with a virulent mSTM strain and to examine the kinetics of STM-specific IgA, IgM and IgG antibodies induced by vaccination and infection.ResultsDespite clinical signs being present in both groups, the vaccination led to a significant reduction of diarrhoea, overall clinical symptoms and a milder elevation of the body temperature. Necropsy revealed fewer pathological lesions in the gastrointestinal tract of vaccinated compared to control animals. Moreover, in the ileal and caecal mucosa and in the ileocaecal lymph nodes the challenge strain burden was significantly reduced by vaccination. Significant differences in the antibody responses of both groups were present during the vaccination period and after infection. In vaccinated animals Salmonella-specific IgA and IgG antibody levels increased significantly after vaccination and were even more pronounced in response to challenge. In contrast, similarly low levels of IgM antibodies were detected during the vaccination period in both vaccinated and non-vaccinated animals. However, after challenge IgM antibody levels increased significantly in control pigs while neither IgA nor IgG antibodies were detectable.ConclusionThe data demonstrate that mSTM can evoke clinical signs in weaners. Due to the vaccination their incidence and magnitude were significantly milder. Vaccination also led to a significantly reduced challenge strain burden in the intestine and the lymph nodes which is comparable to previous studies using the same vaccine in a challenge with biphasic STM. Therefore, it is concluded that this vaccine induces immunity against monophasic and biphasic STM strains. Furthermore, the results of antibody profiles in response to vaccination and infection provide additional evidence for humoral immune mechanisms triggered during Salmonella infection or vaccination.


Innovative Food Science and Emerging Technologies | 2016

The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate

P. Meinlschmidt; Elke Ueberham; Jörg Lehmann; Kai Reineke; Oliver Schlüter; Ute Schweiggert-Weisz; Peter Eisner


Innovative Food Science and Emerging Technologies | 2017

High pressure processing assisted enzymatic hydrolysis – An innovative approach for the reduction of soy immunoreactivity

P. Meinlschmidt; V. Brode; Robert Sevenich; Elke Ueberham; Ute Schweiggert-Weisz; Jörg Lehmann; Cornelia Rauh; Dietrich Knorr; P. Eisner

Collaboration


Dive into the Elke Ueberham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beate K. Straub

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge