Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen D. Inutan is active.

Publication


Featured researches published by Ellen D. Inutan.


Molecular & Cellular Proteomics | 2010

Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions

Sarah Trimpin; Ellen D. Inutan; Thushani N. Herath; Charles N. McEwen

The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.


Journal of the American Society for Mass Spectrometry | 2012

A Mechanism for Ionization of Nonvolatile Compounds in Mass Spectrometry: Considerations from MALDI and Inlet Ionization

Sarah Trimpin; Beixi Wang; Ellen D. Inutan; Jing Li; Christopher B. Lietz; Andrew F. Harron; Vincent S. Pagnotti; Diana Sardelis; Charles N. McEwen

Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.


Analytical Chemistry | 2010

Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

Sarah Trimpin; Ellen D. Inutan; Thushani N. Herath; Charles N. McEwen

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.


Analytical Chemistry | 2010

New paradigm in ionization: multiply charged ion formation from a solid matrix without a laser or voltage.

Charles N. McEwen; Vincent S. Pagnotti; Ellen D. Inutan; Sarah Trimpin

Laserspray ionization (LSI) is a new approach to producing multiply charged ions from solids on surfaces by laser ablation of matrixes commonly used in matrix-assisted laser desorption/ionization (MALDI). We show that the only necessity of the laser for producing multiply charged ions is to deliver particles or droplets of the matrix/analyte mixture to an ionization zone which is simply a heated inlet to the vacuum of the mass spectrometer. Several other methods for delivering sample are demonstrated to produce nearly equivalent results. One example shows the use of an air gun replacing the laser and producing mass spectra of proteins by shooting pellets into a metal plate which has matrix/analyte applied to the opposite side and near the ion entrance inlet to the mass spectrometer. Multiply charged ions of proteins are produced in the absence of any electric field or laser and with only the need of a heated ion entrance capillary or skimmer. The commonality of the matrix with MALDI and the mild conditions necessary for formation of ions brings into question the mechanism of formation of multiply charged ions and the importance of matrix structure in this process.


Analytical Chemistry | 2010

Automated Solvent-Free Matrix Deposition for Tissue Imaging by Mass Spectrometry

Sarah Trimpin; Thushani N. Herath; Ellen D. Inutan; Jim Wager-Miller; Paul Kowalski; Emmanuelle Claude; J. Michael Walker; Ken Mackie

The ability to analyze complex (macro) molecules is of fundamental importance for understanding chemical, physical, and biological processes. Complexity may arise from small differences in structure, large dynamic range, as well as a vast range in solubility or ionization, imposing daunting tasks in areas as different as lipidomics and proteomics. Here, we describe a rapid matrix application that permits the deposition of matrix-assisted laser desorption/ionization (MALDI) matrix solvent-free. This solvent-free one-step automatic matrix deposition is achieved through vigorous movements of beads pressing the matrix material through a metal mesh. The mesh (20 mum) produces homogeneous coverage of <12 microm crystals (DHB, CHCA matrixes) in 1 min, as determined by optical microscopy, permitting fast uniform coverage of analyte and possible high-spatial resolution surface analysis. Homogenous tissue coverage of <5 microm sized crystals is achieved using a 3 microm mesh. Solvent-free MALDI analysis on a time-of-flight (TOF) mass analyzer of mouse brain tissue homogenously covered with CHCA matrix subsequently provides a homogeneous response in ion signal intensity. Total solvent-free analysis (TSA) by mass spectrometry (MS) of tissue sections is carried out by applying the MALDI matrix solvent-free for subsequent ionization and gas phase separation for decongestion of complexity in the absence of any solvent using ion mobility spectrometry (IMS) followed by MS detection. Isobaric compositions were well-delineated using TSA by MS.


Journal of the American Society for Mass Spectrometry | 2013

Matrix Assisted Ionization in Vacuum, a Sensitive and Widely Applicable Ionization Method for Mass Spectrometry

Sarah Trimpin; Ellen D. Inutan

AbstractAn astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.


Analytical Chemistry | 2011

Commercial Intermediate Pressure MALDI Ion Mobility Spectrometry Mass Spectrometer Capable of Producing Highly Charged Laserspray Ionization Ions

Ellen D. Inutan; Beixi Wang; Sarah Trimpin

The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide families are exceptionally well separated because of the ability of IP-LSI to produce multiple charging.


Molecular & Cellular Proteomics | 2013

Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry

Ellen D. Inutan; Sarah Trimpin

The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry.


Molecular & Cellular Proteomics | 2011

Laserspray Ionization, a New Method for Protein Analysis Directly from Tissue at Atmospheric Pressure with Ultrahigh Mass Resolution and Electron Transfer Dissociation

Ellen D. Inutan; Alicia L. Richards; James Wager-Miller; Ken Mackie; Charles N. McEwen; Sarah Trimpin

Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.


Analytical Chemistry | 2011

Extending the Laserspray Ionization Concept to Produce Highly Charged Ions at High Vacuum on a Time-of-Flight Mass Analyzer

Sarah Trimpin; Yue Ren; Beixi Wang; Christopher B. Lietz; Alicia L. Richards; Darrell D. Marshall; Ellen D. Inutan

A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.

Collaboration


Dive into the Ellen D. Inutan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beixi Wang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Charles N. McEwen

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar

Ken Mackie

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Wager-Miller

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge