James Wager-Miller
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James Wager-Miller.
BMC Genomics | 2011
Brady K. Atwood; Jacqueline Lopez; James Wager-Miller; Ken Mackie; Alex Straiker
BackgroundG protein coupled receptors (GPCRs) are one of the most widely studied gene superfamilies. Thousands of GPCR research studies have utilized heterologous expression systems such as human embryonic kidney cells (HEK293). Though often treated as blank slates, these cell lines nevertheless endogenously express GPCRs and related signaling proteins. The outcome of a given GPCR study can be profoundly influenced by this largely unknown complement of receptors and/or signaling proteins. Little easily accessible information exists that describes the expression profiles of the GPCRs in cell lines. What is accessible is often limited in scope - of the hundreds of GPCRs and related proteins, one is unlikely to find information on expression of more than a dozen proteins in a given cell line. Microarray technology has allowed rapid analysis of mRNA levels of thousands of candidate genes, but though often publicly available, the results can be difficult to efficiently access or even to interpret.ResultsTo bridge this gap, we have used microarrays to measure the mRNA levels of a comprehensive profile of non-chemosensory GPCRs and over a hundred GPCR signaling related gene products in four cell lines frequently used for GPCR research: HEK293, AtT20, BV2, and N18.ConclusionsThis study provides researchers an easily accessible mRNA profile of the endogenous signaling repertoire that these four cell lines possess. This will assist in choosing the most appropriate cell line for studying GPCRs and related signaling proteins. It also provides a better understanding of the potential interactions between GPCRs and those signaling proteins.
Molecular Pharmacology | 2012
Brady K. Atwood; James Wager-Miller; Christopher Haskins; Alex Straiker; Ken Mackie
Receptor internalization increases the flexibility and scope of G protein-coupled receptor (GPCR) signaling. CB1 and CB2 cannabinoid receptors undergo internalization after sustained exposure to agonists. However, it is not known whether different agonists internalize CB2 to different extents. Because CB2 is a promising therapeutic target, understanding its trafficking in response to different agonists is necessary for a complete understanding of its biology. Here we profile a number of cannabinoid receptor ligands and provide evidence for marked functional selectivity of cannabinoid receptor internalization. Classic, aminoalkylindole, bicyclic, cannabilactone, iminothiazole cannabinoid, and endocannabinoid ligands varied greatly in their effects on CB1 and CB2 trafficking. Our most striking finding was that (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212-2) (and other aminoalkylindoles) failed to promote CB2 receptor internalization, whereas 5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol (CP55,940) robustly internalized CB2 receptors. Furthermore, WIN55,212-2 competitively antagonized CP55,940-induced CB2 internalization. Despite these differences in internalization, both compounds activated CB2 receptors as measured by extracellular signal-regulated kinase 1/2 phosphorylation and recruitment of β-arrestin2 to the membrane. In contrast, whereas CP55,940 inhibited voltage-gated calcium channels via CB2 receptor activation, WIN55,212-2 was ineffective on its own and antagonized the effects of CP55,940. On the basis of the differences we found between these two ligands, we also tested the effects of other cannabinoids on these signaling pathways and found additional evidence for functional selectivity of CB2 ligands. These novel data highlight that WIN55,212-2 and other cannabinoids show strong functional selectivity at CB2 receptors and suggest that different classes of CB2 ligands may produce diverse physiological effects, emphasizing that each class needs to be separately evaluated for therapeutic efficacy.
Rapid Communications in Mass Spectrometry | 2011
Alicia L. Richards; Christopher B. Lietz; James Wager-Miller; Ken Mackie; Sarah Trimpin
Imaging mass spectrometry has been used to provide information on the spatial distribution of lipids,[1,2] peptides[3] and proteins,[4] as well as pharmaceuticals[5] and metabolites[6,7] directly from biological tissue sections. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry has been successful in investigating protein changes corresponding to several diseases, including Alzheimer’s,[8] Parkinson’s,[9,10] and cancer.[11-13] Secondary ion mass spectrometry (SIMS) has been used to map the distribution of cancer agents[14] and lipids[15] with high sensitivity and spatial resolution, although its mass range is limited by extensive molecular fragmentation.[16] Desorption electrospray ionization (DESI), an ambient ionization method, shows promise in the imaging of living tissue without sample preparation,[17,18] but its spatial resolution is currently limited.[19] Common to all surface imaging methods is the ablation from the front side, also referred to as reflection geometry, with the laser beam, cluster beam or liquid stream at an angle to the plane of the surface. Pairing the sensitivity and specificity of mass spectrometry (MS) with imaging techniques has the potential to provide information on the chemical composition of surfaces at the subcellular dimension, but necessitates the development of methods combining high-throughput analysis and high sensitivity with high spatial resolution.
PLOS ONE | 2013
Chia-Shan Wu; Hongmei Chen; Hao Sun; Jie Zhu; Chris P. Jew; James Wager-Miller; Alex Straiker; Corinne M. Spencer; Heather B. Bradshaw; Ken Mackie; Hui-Chen Lu
The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.
Molecular & Cellular Proteomics | 2011
Ellen D. Inutan; Alicia L. Richards; James Wager-Miller; Ken Mackie; Charles N. McEwen; Sarah Trimpin
Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.
Journal of Lipid Research | 2012
Alicia L. Richards; Christopher B. Lietz; James Wager-Miller; Ken Mackie; Sarah Trimpin
A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MSn fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser.
Analytical Chemistry | 2012
Ellen D. Inutan; James Wager-Miller; Ken Mackie; Sarah Trimpin
This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of soft acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.
Journal of Molecular Signaling | 2012
Douglas McHugh; James Wager-Miller; Jeremy Page; Heather B. Bradshaw
Background Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. Endocannabioid signaling recruits microglia toward neurons by engaging cannabinoid CB2 and abnormal cannabidiol (Abn-CBD) receptors. The Abn-CBD receptor is a prominent atypical cannabinoid receptor that had been discriminated by means of various pharmacological and genetic tools but remained to be identified at the molecular level. We recently introduced N-arachidonoyl glycine (NAGly) signaling via GPR18 receptors as an important novel signaling mechanism in microglial-neuronal communication. NAGly is an endogenous, enzymatically oxygenated metabolite of the endocannabinoid N-arachidonoyl ethanolamide (AEA). Our recent studies support strongly two hypotheses; first that NAGly initiates directed microglial migration in the CNS through activation of GPR18, and second that GPR18 is the Abn-CBD receptor. Here we present siRNA knockdown data in further support of these hypotheses. Findings A GPR18-targetting siRNA pSUPER G418 GFP cDNA plasmid was created and transfected into BV-2 microglia. Successfully transfected GFP+ GPR18 siRNA BV-2 microglia displayed reduced GPR18 mRNA levels and immunocytochemical staining. Cell migration induced by 1 μM concentrations of NAGly, O-1602 and Abn-CBD were significantly attenuated in GFP+ cells. Conclusions Our data provide definitive evidence that these compounds, characteristic of Abn-CBD receptor pharmacology, are acting via GPR18 in BV-2 microglia. A fuller understanding of the hitherto unidentified cannabinoid receptors such as GPR18; their molecular interactions with endogenous ligands; and how phytocannabinoids influence their signaling is vital if we are to comprehensively assess the function of the endogenous cannabinoid signaling system in human health and disease.
ACS Chemical Neuroscience | 2015
David R. Janero; Suma Yaddanapudi; Nikolai Zvonok; Kumar V. Subramanian; Vidyanand G. Shukla; Edward L. Stahl; Lei Zhou; Dow P. Hurst; James Wager-Miller; Laura M. Bohn; Patricia H. Reggio; Ken Mackie; Alexandros Makriyannis
The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptors ligand-interaction landscape and molecular pharmacology constitute a prime contemporary research focus. For this purpose, we report utilization of AM3677, a designer endocannabinoid (anandamide) analogue derivatized with a reactive electrophilic isothiocyanate functionality, as a covalent, CB1R-selective chemical probe. The data demonstrate that reaction of AM3677 with a cysteine residue in transmembrane helix 6 of human CB1R (hCB1R), C6.47(355), is a key feature of AM3677s ligand-binding motif. Pharmacologically, AM3677 acts as a high-affinity, low-efficacy CB1R agonist that inhibits forskolin-stimulated cellular cAMP formation and stimulates CB1R coupling to G protein. AM3677 also induces CB1R endocytosis and irreversible receptor internalization. Computational docking suggests the importance of discrete hydrogen bonding and aromatic interactions as determinants of AM3677s topology within the ligand-binding pocket of active-state hCB1R. These results constitute the initial identification and characterization of a potent, high-affinity, hCB1R-selective covalent agonist with utility as a pharmacologically active, orthosteric-site probe for providing insight into structure-function correlates of ligand-induced CB1R activation and the molecular features of that activation by the native ligand, anandamide.
European Journal of Mass Spectrometry | 2015
Beixi Wang; Chenelle L. Dearring; James Wager-Miller; Ken Mackie; Sarah Trimpin
Solvent assisted ionization inlet (SAII) and matrix assisted ionization vacuum (MAIV) were used to quantify rapidly an antipsychotic drug, clozapine, directly from surfaces with minimal sample preparation. This simple surface analysis method based on SAII- and MAIV-mass spectrometry (MS) was developed to allow the detection of endogenous lipids, metabolites, and clozapine directly from sections of mouse brain tissue. A rapid surface assessment was achieved by SAII with the assistance of heat applied to the mass spectrometer inlet. MAIV provided an improved reproducibility without the need of a heated inlet. In addition, isotope dilution and standard addition were used without sample clean-up, and the results correlate well with liquid chromatography tandem MS using sample work-up. Using the simple surface methods, standard solutions containing clozapine and a deuterated internal standard (clozapine-d8) at different concentration ratios were used in the extraction and quantification of clozapine from brain tissue sections of a drug-treated mouse using different tissue thicknesses. The amount of clozapine extracted by these surface methods was independent of tissue thickness.