Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen Hornung is active.

Publication


Featured researches published by Ellen Hornung.


Journal of Biological Chemistry | 2009

Identification of PpoA from Aspergillus nidulans as a Fusion Protein of a Fatty Acid Heme Dioxygenase/Peroxidase and a Cytochrome P450

Florian Brodhun; Cornelia Göbel; Ellen Hornung; Ivo Feussner

The homothallic ascomycete Aspergillus nidulans serves as model organism for filamentous fungi because of its ability to propagate with both asexual and sexual life cycles, and fatty acid-derived substances regulate the balance between both cycles. These so-called psi (precocious sexual inducer) factors are produced by psi factor-producing oxygenases (Ppo enzymes). Bioinformatic analysis predicted the presence of two different heme domains in Ppo proteins: in the N-terminal region, a fatty acid heme dioxygenase/peroxidase domain is predicted, whereas in the C-terminal region, a P450 heme thiolate domain is predicted. To analyze the reaction catalyzed by Ppo enzymes, PpoA was expressed in Escherichia coli as an active enzyme. The protein was purified by 62-fold and identified as a homotetrameric ferric heme protein that metabolizes mono- as well as polyunsaturated C16 and C18 fatty acids at pH ∼7.25. The presence of thiolate-ligated heme was confirmed on the basis of sequence alignments and the appearance of a characteristic 450 nm CO-binding spectrum. Studies on its reaction mechanism revealed that PpoA uses different heme domains to catalyze two separate reactions. Within the heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid by abstracting a H-atom from C-8 of the fatty acid, yielding a carbon-centered radical that reacts with molecular dioxygen. In the second reaction step, 8-hydroperoxyoctadecadienoic acid is isomerized within the P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. We identify PpoA as a bifunctional P450 fusion protein that uses a previously unknown reaction mechanism for forming psi factors.


Molecular Microbiology | 2007

Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem

Marion Brodhagen; Dimitrios I. Tsitsigiannis; Ellen Hornung; Cornelia Goebel; Ivo Feussner; Nancy P. Keller

In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans, oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene (ZmLOX3) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild‐type A. nidulans, and into a ΔppoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2–3 expression was decreased when infected by A. nidulansΔppo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross‐talk in the Aspergillus–seed pathosystem.


Biochemical Journal | 2010

PpoC from Aspergillus nidulans is a fusion protein with only one active haem

Florian Brodhun; Stefan Schneider; Cornelia Göbel; Ellen Hornung; Ivo Feussner

In Aspergillus nidulans Ppos [psi (precocious sexual inducer)-producing oxygenases] are required for the production of so-called psi factors, compounds that control the balance between the sexual and asexual life cycle of the fungus. The genome of A. nidulans harbours three different ppo genes: ppoA, ppoB and ppoC. For all three enzymes two different haem-containing domains are predicted: a fatty acid haem peroxidase/dioxygenase domain in the N-terminal region and a P450 haem-thiolate domain in the C-terminal region. Whereas PpoA was shown to use both haem domains for its bifunctional catalytic activity (linoleic acid 8-dioxygenation and 8-hydroperoxide isomerization), we found that PpoC apparently only harbours a functional haem peroxidase/dioxygenase domain. Consequently, we observed that PpoC catalyses mainly the dioxygenation of linoleic acid (18:2Delta9Z,12Z), yielding 10-HPODE (10-hydroperoxyoctadecadienoic acid). No isomerase activity was detected. Additionally, 10-HPODE was converted at lower rates into 10-KODE (10-keto-octadecadienoic acid) and 10-HODE (10-hydroxyoctadecadienoic acid). In parallel, decomposition of 10-HPODE into 10-ODA (10-octadecynoic acid) and volatile C-8 alcohols that are, among other things, responsible for the characteristic mushroom flavour. Besides these principle differences we also found that PpoA and PpoC can convert 8-HPODE and 10-HPODE into the respective epoxy alcohols: 12,13-epoxy-8-HOME (where HOME is hydroxyoctadecenoic acid) and 12,13-epoxy-10-HOME. By using site-directed mutagenesis we demonstrated that both enzymes share a similar mechanism for the oxidation of 18:2Delta9Z,12Z; they both use a conserved tyrosine residue for catalysis and the directed oxygenation at the C-8 and C-10 is most likely controlled by conserved valine/leucine residues in the dioxygenase domain.


Journal of Experimental Botany | 2011

The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons

Maike Rudolph; Armin Schlereth; Martina Körner; Kirstin Feussner; Ekkehardt Berndt; Michael Melzer; Ellen Hornung; Ivo Feussner

Oilseed germination is characterized by the mobilization of storage lipids as a carbon and energy source for embryonic growth. In addition to storage lipid degradation in germinating oilseeds via the direct action of a triacylglycerol lipase (TGL) on the storage lipids, a second degradation pathway that is dependent on a specific lipid body trilinoleate 13-lipoxygenase (13-LOX) has been proposed in several plant species. The activity of this specific 13-LOX leads first to the formation of ester lipid hydroperoxides. These hydroperoxy fatty acids are then preferentially cleaved off by a TGL and serve as a substrate for glyoxysomal β-oxidation. As a prerequisite for triacylglycerol (TAG) mobilization, a partial degradation of the phospholipid monolayer and/or membrane proteins of the oil body has been discussed. Evidence has now been found for both processes: partial degradation of the proteins caleosin and oleosin was observed and simultaneously a patatin-like protein together with transient phospholipase (PLase) activity could be detected at the oil body membranes during germination. Moreover, in vitro experiments with isolated oil bodies from mature seeds revealed that the formation of 13-LOX-derived lipid peroxides in lipid body membranes is increased after incubation with the purified recombinant patatin-like protein. These experiments suggest that in vivo the degradation of storage lipids in cucumber cotyledons is promoted by the activity of a specific oil body PLase, which leads to an increased decomposition of the oil body membrane by the 13-LOX and thereby TAGs may be better accessible to LOX and TGL.


Journal of Lipid Research | 2012

Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes

Mareike Heilmann; Tim Iven; Katharina Ahmann; Ellen Hornung; Sten Stymne; Ivo Feussner

Wax esters are neutral lipids exhibiting desirable properties for lubrication. Natural sources have traditionally been whales. Additionally some plants produce wax esters in their seed oil. Currently there is no biological source available for long chain length monounsaturated wax esters that are most suited for industrial applications. This study aimed to identify enzymatic requirements enabling their production in oilseed plants. Wax esters are generated by the action of fatty acyl-CoA reductase (FAR), generating fatty alcohols and wax synthases (WS) that esterify fatty alcohols and acyl-CoAs to wax esters. Based on their substrate preference, a FAR and a WS from Mus musculus were selected for this study (MmFAR1 and MmWS). MmWS resides in the endoplasmic reticulum (ER), whereas MmFAR1 associates with peroxisomes. The elimination of a targeting signal and the fusion to an oil body protein yielded variants of MmFAR1 and MmWS that were cotargeted and enabled wax ester production when coexpressed in yeast or Arabidopsis. In the fae1 fad2 double mutant, rich in oleate, the cotargeted variants of MmFAR1 and MmWS enabled formation of wax esters containing >65% oleyl-oleate. The data suggest that cotargeting of unusual biosynthetic enzymes can result in functional interplay of heterologous partners in transgenic plants.


Journal of Biological Chemistry | 2007

A Small Membrane-peripheral Region Close to the Active Center Determines Regioselectivity of Membrane-bound Fatty Acid Desaturases from Aspergillus nidulans

Mareike Hoffmann; Ellen Hornung; Silke Busch; Nina Kassner; Philipp Ternes; Gerhard H. Braus; Ivo Feussner

Fatty acid desaturases catalyze the introduction of double bonds at specific positions of an acyl chain and are categorized according to their substrate specificity and regioselectivity. The current understanding of membrane-bound desaturases is based on mutant studies, biochemical topology analysis, and the comparison of related enzymes with divergent functionality. Because structural information is lacking, the principles of membrane-bound desaturase specificity are still not understood despite of substantial research efforts. Here we compare two membrane-bound fatty acid desaturases from Aspergillus nidulans: a strictly monofunctional oleoyl-Δ12 desaturase and a processive bifunctional oleoyl-Δ12/linoleoyl-ω3 desaturase. The high similarities in the primary sequences of the enzymes provide an ideal starting point for the systematic analysis of factors determining substrate specificity and bifunctionality. Based on the most current topology models, both desaturases were divided into nine domains, and the domains of the monofunctional Δ12 desaturase were systematically exchanged for their respective corresponding matches of the bifunctional sister enzyme. Catalytic capacities of hybrid enzymes were tested by heterologous expression in yeast, followed by biochemical characterization of the resulting fatty acid patterns. The individual exchange of two domains of a length of 18 or 49 amino acids each resulted in bifunctional Δ12/ω3 activity of the previously monofunctional parental enzyme. Sufficient determinants of fatty acid desaturase substrate specificity and bifunctionality could, thus, be narrowed down to a membrane-peripheral region close to the catalytic site defined by conserved histidine-rich motifs in the topology model.


Phytochemistry | 2009

Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways

Aldwin Anterola; Cornelia Göbel; Ellen Hornung; George Sellhorn; Ivo Feussner; Howard D. Grimes

Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 alpha-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, alpha-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred alpha-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from alpha-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.


FEBS Letters | 1999

Isolation and characterization of a calendic acid producing (8,11)-linoleoyl desaturase1

Kathrin Fritsche; Ellen Hornung; Nicola Peitzsch; Andreas Renz; Ivo Feussner

For the biosynthesis of calendic acid a (8,11)‐linoleoyl desaturase activity has been proposed. To isolate this desaturase, PCR‐based cloning was used. The open reading frame of the isolated full‐length cDNA is a 1131 bp sequence encoding a protein of 377 amino acids. For functional identification the cDNA was expressed in Saccharomyces cerevisiae, and formation of calendic acid was analyzed by RP‐HPLC. The expression of the heterologous enzyme resulted in a significant amount of calendic acid presumably esterified within phospholipids. The results presented here identify a gene encoding a new type of (1,4)‐acyl lipid desaturase.


Plant Methods | 2013

Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry.

Tim Iven; Cornelia Herrfurth; Ellen Hornung; Mareike Heilmann; Per Hofvander; Sten Stymne; Li-Hua Zhu; Ivo Feussner

BackgroundWax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts.ResultsWe present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS.ConclusionsWe developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester.


Plant Biotechnology Journal | 2016

Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil

Tim Iven; Ellen Hornung; Mareike Heilmann; Ivo Feussner

Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.

Collaboration


Dive into the Ellen Hornung's collaboration.

Top Co-Authors

Avatar

Ivo Feussner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Iven

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge