Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Rosahl is active.

Publication


Featured researches published by Sabine Rosahl.


Science | 2005

Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis

Volker Lipka; Jan Dittgen; Paweł Bednarek; Riyaz A. Bhat; Marcel Wiermer; Mónica Stein; Jörn Landtag; Wolfgang Brandt; Sabine Rosahl; Dierk Scheel; Francisco Llorente; Antonio Molina; Jane E. Parker; Shauna Somerville; Paul Schulze-Lefert

Nonhost resistance describes the immunity of an entire plant species against nonadapted pathogen species. We report that Arabidopsis PEN2 restricts pathogen entry of two ascomycete powdery mildew fungi that in nature colonize grass and pea species. The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion resistance mechanism. Postinvasion fungal growth is blocked by a separate resistance layer requiring the EDS1-PAD4-SAG101 signaling complex, which is known to function in basal and resistance (R) gene–triggered immunity. Concurrent impairment of pre- and postinvasion resistance renders Arabidopsis a host for both nonadapted fungi.


Plant Physiology | 2005

Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens

Isabelle Prost; Sandrine Dhondt; Grit Rothe; Jorge Vicente; María José Rodríguez; Neil Kift; Francis Carbonne; Gareth Griffiths; Marie-Thérèse Esquerré-Tugayé; Sabine Rosahl; Carmen Castresana; Mats Hamberg; Joëlle Fournier

Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity, such as 13-keto-9(Z),11(E),15(Z)-octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly, this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms.


The EMBO Journal | 2002

Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases.

Frédéric Brunner; Sabine Rosahl; Justin Lee; Jason J. Rudd; Carola Geiler; Sakari Kauppinen; Grethe Rasmussen; Dierk Scheel; Thorsten Nürnberger

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen‐associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep‐13, constitutes a surface‐exposed fragment within a novel calcium‐dependent cell wall transglutaminase (TGase) from Phytophthora sojae. TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep‐13 identified the same amino acids indispensable for both TGase and defense‐eliciting activity. Pep‐13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus‐specific recognition determinant for the activation of plant defense in host and non‐host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.


Biochimica et Biophysica Acta | 2002

Oxylipin profiling in pathogen-infected potato leaves.

Cornelia Göbel; Ivo Feussner; Mats Hamberg; Sabine Rosahl

Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.


Journal of Biological Chemistry | 2003

Lipid Peroxidation during the Hypersensitive Response in Potato in the Absence of 9-Lipoxygenases

Cornelia Göbel; Ivo Feussner; Sabine Rosahl

Hypersensitive cell death is an important defense reaction of plants to pathogen infection and is accompanied by lipid peroxidation processes. These may occur non-enzymatically by the action of reactive oxygen species or may be catalyzed by enzymes such as α-dioxygenases, lipoxygenases, or peroxidases. Correlative data showing increases in 9-lipoxygenase products in hyper-sensitively reacting cells have so far suggested that a large part of lipid peroxidation is mediated by a specific set of 9-lipoxygenases. To address the significance of 9-lipoxygenases for this type of pathogen response in potato, RNA interference constructs of a specific pathogen-induced potato 9-lipoxygenase were transferred to potato plants. Significantly reduced 9-lipoxygenase transcript levels were observed in transgenic plants after pathogen treatment. In addition, 9-lipoxygenase activity was hardly detectable, and levels of 9-lipoxygenase-derived oxylipins were reduced up to 12-fold after pathogen infection. In contrast to wild type plants, high levels of non-enzymatically as well as 13-lipoxygenase-derived oxylipins were present in 9-lipoxygenase-deficient plants. From this we conclude that during the normal hypersensitive response in potato, lipid peroxidation may occur as a controlled and directed process that is facilitated by the action of a specific 9-lipoxygenase. If 9-lipoxygenase-mediated formation of hydroperoxides is repressed, autoxidative lipid peroxidation processes and 13-lipoxygenase-mediated oxylipins synthesis become prominent. The unaltered timing and extent of necrosis formation suggests that the origin of lipid hydroperoxides does not influence pathogen-induced cell death in potato.


FEBS Letters | 2001

A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells1

Michael Stumpe; Romy Kandzia; Cornelia Göbel; Sabine Rosahl; Ivo Feussner

In elicitor‐treated potato cells, 9‐lipoxygenase‐derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9‐hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.


Molecular Plant-microbe Interactions | 2007

Salicylic Acid Is Important for Basal Defense of Solanum tuberosum Against Phytophthora infestans

Vincentius A. Halim; Lennart Eschen-Lippold; Simone Altmann; Mandy Birschwilks; Dierk Scheel; Sabine Rosahl

The importance of the signaling compound salicylic acid for basal defense of potato (Solanum tuberosum L. cv. Désirée) against Phytophthora infestans, the causal agent of late blight disease, was assessed using transgenic NahG potato plants which are unable to accumulate salicylic acid. Although the size of lesions caused by P. infestans was not significantly different in wild-type and transgenic NahG plants, real-time polymerase chain reaction analyses revealed a drastic enhancement of pathogen growth in potato plants depleted of salicylic acid. Increased susceptibility of NahG plants correlated with compromised callose formation and reduced early defense gene expression. NahG plants pretreated with the salicylic acid analog 2,6-dichloro-isonicotinic acid allowed pathogen growth to a similar extent as did wild-type plants, indicating that salicylic acid is an important compound required for basal defense of potato against P. infestans.


Plant Journal | 2009

PAMP‐induced defense responses in potato require both salicylic acid and jasmonic acid

Vincentius A. Halim; Simone Altmann; Dorothea Ellinger; Lennart Eschen-Lippold; Otto Miersch; Dierk Scheel; Sabine Rosahl

To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.


Plant Physiology | 1994

Expression of Lipoxygenase in Wounded Tubers of Solanum tuberosum L

Andreas Geerts; Dorothee Feltkamp; Sabine Rosahl

A lipoxygenase cDNA clone from Solanum tuberosum L. was analyzed to study the role of lipoxygenases in potato development and wound response. Sequence analysis and comparison of the deduced amino acid sequence revealed high homology to other plant lipoxygenases. Expression of the cDNA sequences in Escherichia coli and subsequent analysis of bacterial protein extracts showed lipoxygenase activity using linoleic, linolenic, or arachidonic acid as substrates. Transcripts encoding the potato lipoxygenase were most abundant in tuber tissue, lower in roots, and hardly detectable in leaves, petioles, and stems. The induction of lipoxygenase expression in tubers by wounding was dependent on various parameters. Whereas lipoxygenase transcript levels increased in discs from stored tubers incubated under aerobic conditions, tubers taken from a growing plant did not accumulate lipoxygenase transcripts in response to wounding. Incubation of tuber discs in buffer did not lead to an increase in lipoxygenase RNA levels; however, methyl jasmonate stimulated lipoxygenase expression after 24 h in stored tubers. Proteinase inhibitor II mRNAs decreased in stored tubers as well as in discs from growing tubers.


Planta | 2008

Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

Karolina M. Pajerowska-Mukhtar; M. Shahid Mukhtar; Nicolas Guex; Vincentius A. Halim; Sabine Rosahl; Imre E. Somssich; Christiane Gebhardt

Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.

Collaboration


Dive into the Sabine Rosahl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Feussner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Hornung

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge