Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen J. Beswick is active.

Publication


Featured researches published by Ellen J. Beswick.


Journal of Immunology | 2006

Expression of B7-H1 on Gastric Epithelial Cells: Its Potential Role in Regulating T Cells during Helicobacter pylori Infection

Soumita Das; Giovanni Suarez; Ellen J. Beswick; Johanna C. Sierra; David Y. Graham; Victor E. Reyes

Helicobacter pylori infection is associated with gastritis, ulcers, and gastric cancer. The infection becomes chronic as the host response is unable to clear it. Gastric epithelial cells (GEC) play an important role during the host response, and their expression of class II MHC and costimulatory molecules such as CD80 and CD86 suggests their role in local Ag presentation. Although T cells are recruited to the infected gastric mucosa, they have been reported to be hyporesponsive. In this study, we detected the expression of B7-H1 (programmed death-1 ligand 1), a member of B7 family of proteins associated with T cell inhibition on GEC. Quantitative real-time RT-PCR revealed that B7-H1 expression increased significantly on GEC after H. pylori infection. Western blot analysis showed that B7-H1 expression was induced by various H. pylori strains and was independent of H. pylori virulence factors such as Cag, VacA, and Urease. The functional role of B7-H1 in the cross talk between GEC and T cells was assessed by coculturing GEC or H. pylori-infected GEC with CD4+ T cells isolated from peripheral blood. Using blocking Abs to B7-H1 revealed that B7-H1 was involved in the suppression of T cell proliferation and IL-2 synthesis, and thus suggested a role for B7-H1 on the epithelium as a contributor in the chronicity of H. pylori infection.


Infection and Immunity | 2007

Expression of the Programmed Death Ligand 1, B7-H1, on Gastric Epithelial Cells after Helicobacter pylori Exposure Promotes Development of CD4+ CD25+ FoxP3+ Regulatory T Cells

Ellen J. Beswick; Irina V. Pinchuk; Soumita Das; Don W. Powell; Victor E. Reyes

ABSTRACT During Helicobacter pylori infection, T cells are recruited to the gastric mucosa, but the host T-cell response is not sufficient to clear the infection. Some of the recruited T cells respond in a polarized manner to a Th1 response, while others become anergic. We have previously shown that T-cell anergy may be induced during infection by the interaction of T cells with B7-H1, which is up-regulated on the gastric epithelium during H. pylori infection. Recently, regulatory T (Treg) cells with a CD4+ CD25high FoxP3+ phenotype were found at an increased frequency in the gastric mucosa of biopsy specimens from H. pylori-infected patients. While Treg cells are important in maintaining tolerance, they can also suppress immune responses during infection. In this study, we examined the induction of the Treg phenotype when naïve T cells were incubated with gastric epithelial cells exposed to H. pylori. The frequency of this phenotype was markedly decreased when B7-H1 was blocked with monoclonal antibodies or its expression was blocked with small interfering RNA. The functional role of these Treg cells was assessed in proliferation assays when the cells were cocultured with activated T cells, which effectively decreased proliferation of the cells.


Infection and Immunity | 2006

The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-κB activation and interleukin-8 production

Ellen J. Beswick; Irina V. Pinchuk; Kyle Minch; Giovanni Suarez; Johanna C. Sierra; Yoshio Yamaoka; Victor E. Reyes

ABSTRACT The pathogenesis associated with Helicobacter pylori infection is the result of both bacterial factors and the host response. We have previously shown that H. pylori binds to CD74 on gastric epithelial cells. In this study, we sought to identify the bacterial protein responsible for this interaction. H. pylori urease from a pool of bacterial surface proteins was found to coprecipitate with CD74. To determine how urease binds to CD74, we used recombinant urease A and B subunits. Recombinant urease B was found to bind directly to CD74 in immunoprecipitation and flow cytometry studies. By utilizing both recombinant urease subunits and urease B knockout bacteria, the urease B-CD74 interaction was shown to induce NF-κB activation and interleukin-8 (IL-8) production. This response was decreased by blocking CD74 with monoclonal antibodies. Further confirmation of the interaction of urease B with CD74 was obtained using a fibroblast cell line transfected with CD74 that also responded with NF-κB activation and IL-8 production. The binding of the H. pylori urease B subunit to CD74 expressed on gastric epithelial cells presents a novel insight into a previously unrecognized H. pylori interaction that may contribute to the proinflammatory immune response seen during infection.


Infection and Immunity | 2005

Helicobacter pylori Binds to CD74 on Gastric Epithelial Cells and Stimulates Interleukin-8 Production

Ellen J. Beswick; David A. Bland; Giovanni Suarez; Carlos A. Barrera; Xuejung Fan; Victor E. Reyes

ABSTRACT The pathogenesis associated with Helicobacter pylori infection requires consistent contact with the gastric epithelium. Although several cell surface receptors have been suggested to play a role in adhesion, the bacterium-host interactions that elicit host responses are not well defined. This study investigated the interaction of H. pylori with the class II major histocompatibility complex (MHC)-associated invariant chain (Ii; CD74), which was found to be highly expressed by gastric epithelial cells. Bacterial binding was increased when CD74 surface expression was increased by gamma interferon (IFN-γ) treatment or by fibroblast cells transfected with CD74, while binding was decreased by CD74 blocking antibodies, enzyme cleavage of CD74, and CD74-coated bacteria. H. pylori was also shown to bind directly to affinity-purified CD74 in the absence of class II MHC. Cross-linking of CD74 and the engagement of CD74 were verified to stimulate IL-8 production by unrelated cell lines expressing CD74 in the absence of class II MHC. Increased CD74 expression by cells increased IL-8 production in response to H. pylori, and agents that block CD74 decreased these responses. The binding of H. pylori to CD74 presents a novel insight into an initial interaction of H. pylori with the gastric epithelium that leads to upregulation of inflammatory responses.


Gastroenterology | 2008

PD-1 Ligand Expression by Human Colonic Myofibroblasts/Fibroblasts Regulates CD4+ T-Cell Activity

Irina V. Pinchuk; Jamal I. Saada; Ellen J. Beswick; Gushyalatha Boya; Sumin M. Qiu; Randy C. Mifflin; Gottumukkala S. Raju; Victor E. Reyes; Don W. Powell

BACKGROUND & AIMS A prominent role for inhibitory molecules PD-L1 and PD-L2 in peripheral tolerance has been proposed. However, the phenotype and function of PD-L-expressing cells in human gut remains unclear. Recent studies suggest that colonic myofibroblasts (CMFs) and fibroblasts are important in the switch from acute inflammation to adaptive immunity. In the normal human colon, CMFs represent a distinct population of major histocompatibility complex class II(+) cells involved in the regulation of mucosal CD4(+) T-cell responses. METHODS PD-L1 and PD-L2 expression on human CMFs was determined using Western blot, fluorescence-activated cell sorter analysis and confocal microscopy. Lymphoproliferation assays and cytokine enzyme-linked immunosorbent assays were used to evaluate the role of B7 costimulators expressed by CMFs with regard to the regulation of preactivated T-helper cell responses. RESULTS We demonstrate here the expression of PD-L1/2 molecules by normal human CMF and fibroblasts in situ and in culture. Both molecules support suppressive functions of CMFs in the regulation of activated CD4(+) T-helper cell proliferative responses; blocking this interaction reverses the suppressive effect of CMFs on T-cell proliferation and leads to increased production of the major T-cell growth factor, interleukin (IL)-2. PD-L1/2-mediated CMF suppressive functions are mainly due to the inhibition of IL-2 production, because supplementation of the coculture media with exogenous IL-2 led to partial recovery of activated T-cell proliferation. CONCLUSIONS Our data suggest that stromal myofibroblasts and fibroblasts may limit T-helper cell proliferative activity in the gut and, thus, might play a prominent role in mucosal intestinal tolerance.


Journal of Biological Chemistry | 2007

Functional and Intracellular Signaling Differences Associated with the Helicobacter pylori AlpAB Adhesin from Western and East Asian Strains

Hong Lu; Jeng Yih Wu; Ellen J. Beswick; Tomoyuki Ohno; Stefan Odenbreit; Rainer Haas; Victor E. Reyes; Masakazu Kita; David Y. Graham; Yoshio Yamaoka

Following adhesion of Helicobacter pylori to gastric epithelial cells, intracellular signaling leads to cytokine production, which causes H. pylori-related gastric injury. Two adjacent homologous genes (alpA and alpB), which encode H. pylori outer membrane proteins, are thought to be associated with adhesion and cytokine induction. We co-cultured gastric epithelial cells with wild type H. pylori strains and their corresponding alpA/alpB-deleted mutants (ΔalpAB). Results were confirmed by complementation. Flow cytometry confirmed that AlpAB was involved in cellular adhesion. Deletion of alpAB reduced interleukin (IL)-6 induction in gastric epithelial cells. Deletion of alpAB reduced IL-8 induction with East Asian but not with Western strains. All AlpAB-positive strains tested activated the extracellular signal-regulated kinase, c-Fos, and cAMP-responsive element-binding protein. Activation of the Jun-N-terminal kinase, c-Jun, and NF-κB was exclusive to AlpAB from East Asian strains. ΔalpAB mutants poorly colonized the stomachs of C57BL/6 mice and were associated with lower mucosal levels of KC and IL-6. Our results suggest that AlpAB may induce gastric injury by mediating adherence to gastric epithelial cells and by modulating proinflammatory intracellular signaling cascades. Known geographical differences in H. pylori-related clinical outcomes may relate to differential effects of East Asian and Western types of AlpAB on NF-κB-related proinflammatory signaling pathways.


Journal of Immunology | 2006

Helicobacter pylori CagA-Dependent Macrophage Migration Inhibitory Factor Produced by Gastric Epithelial Cells Binds to CD74 and Stimulates Procarcinogenic Events

Ellen J. Beswick; Irina V. Pinchuk; Giovanni Suarez; Johanna C. Sierra; Victor E. Reyes

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has recently been implicated in carcinogenesis. Helicobacter pylori, which is closely linked to gastric cancer, induces the gastric epithelium to produce proinflammatory cytokines, including MIF. MIF can bind to CD74, which we have previously shown to be highly expressed on the surface of gastric epithelial cells (GEC) during H. pylori infection. In this study, we sought to investigate the role of the H. pylori-induced MIF on epithelial proliferation and procarcinogenic events. Upon establishing a role for the H. pylori CagA virulence factor in MIF production, MIF binding to CD74 on GEC was confirmed. rMIF and H. pylori were shown to increase GEC proliferation, which was decreased when cagA− strains were used and when CD74 was blocked by mAbs. Apoptosis was also decreased by MIF, but increased by cagA− strains that induced much lower amounts of MIF than the wild-type bacteria. Furthermore, MIF binding to CD74 was also shown to decrease p53 phosphorylation and up-regulate Bcl-2 expression. This data describes a novel system in which an H. pylori virulence factor contributes to the production of a host factor that in turn up-regulates procarcinogenic events by the gastric epithelium.


Journal of Immunology | 2005

Helicobacter pylori-Induced IL-8 Production by Gastric Epithelial Cells Up-Regulates CD74 Expression

Ellen J. Beswick; Soumita Das; Irina V. Pinchuk; Patrick A. Adegboyega; Giovanni Suarez; Yoshio Yamaoka; Victor E. Reyes

CD74, or the class II MHC-associated invariant chain, is best known for the regulation of Ag presentation. However, recent studies have suggested other important roles for this protein in inflammation and cancer studies. We have shown that CD74 is expressed on the surface of gastric cells, and Helicobacter pylori can use this receptor as a point of attachment to gastric epithelial cells, which lead to IL-8 production. This study investigates the ability of H. pylori to up-regulate one of its receptors in vivo and with a variety of gastric epithelial cell lines during infection with H. pylori. CD74 expression was increased dramatically on gastric biopsies from H. pylori-positive patients and gastric cell lines exposed to the bacteria. Gastric cells exposed to H. pylori-conditioned medium revealed that the host cell response was responsible for the up-regulation of CD74. IL-8 was found to up-regulate CD74 cell surface expression because blocking IL-8Rs or neutralizing IL-8 with Abs counteracted the increased expression of CD74 observed during infection with H. pylori. These studies demonstrate how H. pylori up-regulates one of its own receptors via an autocrine mechanism involving one of the products induced from host cells.


Gastroenterology | 2011

Human Colonic Myofibroblasts Promote Expansion of CD4+ CD25high Foxp3+ Regulatory T Cells

Irina V. Pinchuk; Ellen J. Beswick; Jamal I. Saada; Gushyalatha Boya; David A. Schmitt; Gottumukkala S. Raju; Julia Brenmoehl; Gerhard Rogler; Victor E. Reyes; Don W. Powell

BACKGROUND & AIMS Regulatory T (Treg) cells (CD4+ CD25high FoxP3+) regulate mucosal tolerance; their adoptive transfer prevents or reduces symptoms of colitis in mouse models of inflammatory bowel disease. Colonic CD90+ mesenchymal myofibroblasts and fibroblasts (CMFs) are abundant, nonprofessional antigen-presenting cells in the normal human colonic mucosa that suppress proliferation of activated CD4+ effector T cells. We studied CMF suppressive capacity and evaluated the ability of CMF to induce Treg cells. METHODS Allogeneic cocultures of CD4+ T cells and CMFs, derived from normal mucosa of patients undergoing colectomy for colon cancer or inflamed colonic tissues from patients with ulcerative colitis or Crohns disease, were used to assess activation of the Treg cells. RESULTS Coculture of normal CMF with resting or naïve CD4+ T cells led to development of cells with a Treg phenotype; it also induced proliferation of a CD25+ CD127- FoxP3+ T cells, which expressed CTLA-4, interleukin-10, and transforming growth factor-β and had suppressive activities. In contrast to dendritic cells, normal CMFs required exogenous interleukin-2 to induce proliferation of naturally occurring Treg cells. Induction of Treg cells by normal CMFs required major histocompatibility complex class II and prostaglandin E2. CMFs from patients with inflammatory bowel diseases had reduced capacity to induce active Treg cells and increased capacity to transiently generate CD4+CD25+/- CD127+ T cells that express low levels of FoxP3. CONCLUSIONS CMFs suppress the immune response in normal colon tissue and might therefore help maintain colonic mucosal tolerance. Alterations in CMF-mediated induction of Treg cells might promote pathogenesis of inflammatory bowel diseases.


Infection and Immunity | 2008

Macrophage Migration Inhibitory Factor and Interleukin-8 Produced by Gastric Epithelial Cells during Helicobacter pylori Exposure Induce Expression and Activation of the Epidermal Growth Factor Receptor

Ellen J. Beswick; Victor E. Reyes

ABSTRACT While a link between Helicobacter pylori exposure and gastric cancer has been established, the underlying mechanisms remain unclear. H. pylori induces a chronic inflammatory response in infected individuals. A link between chronic inflammation and carcinogenesis has long been suggested but never elucidated. Epidermal growth factor receptor (EGFR) signaling plays an important role in both proinflammatory and procarcinogenic mechanisms and is upregulated on gastric epithelial cells (GECs) during H. pylori exposure. The aim of this study was to examine the effects of two important proinflammatory cytokines released during H. pylori infection, macrophage migration inhibitory factor (MIF) and interleukin-8 (IL-8), on the expression and transactivation of EGFR and on the proliferation of GECs during H. pylori exposure. The expression of EGFR by GECs was increased by exposure to either H. pylori, recombinant MIF, or recombinant IL-8. However, cag pathogenicity island knockout strains of H. pylori had very little effect on expression. MIF and IL-8 also induced phosphorylation of EGFR, signaling events, and proliferation during H. pylori exposure, all of which were decreased when they were neutralized by these cytokines or were blocked from their receptors. The overall role of EGFR in these responses to H. pylori exposure was assessed by knocking down EGFR expression by small interfering RNA.

Collaboration


Dive into the Ellen J. Beswick's collaboration.

Top Co-Authors

Avatar

Victor E. Reyes

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Irina V. Pinchuk

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Don W. Powell

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jamal I. Saada

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Giovanni Suarez

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Iryna V. Pinchuk

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Randy C. Mifflin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita L. Ray

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Johanna C. Sierra

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge