Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen N. Kersh is active.

Publication


Featured researches published by Ellen N. Kersh.


Journal of Virology | 2009

Complete Protection from Repeated Vaginal Simian-Human Immunodeficiency Virus Exposures in Macaques by a Topical Gel Containing Tenofovir Alone or with Emtricitabine

Urvi M. Parikh; Charles Dobard; Sunita Sharma; Mian Er Cong; Hongwei Jia; Amy Martin; Chou Pong Pau; Debra L. Hanson; Patricia C. Guenthner; James M. Smith; Ellen N. Kersh; J. Gerardo García-Lerma; Francis J. Novembre; Ron A. Otten; Thomas M. Folks; Walid Heneine

ABSTRACT New-generation gels that deliver potent antiretroviral drugs against human immunodeficiency virus type 1 have renewed hopes for topical prophylaxis as a prevention strategy. Previous preclinical research with monkey models suggested that high concentrations and drug combinations are needed for high efficacy. We evaluated two long-acting reverse transcriptase inhibitors, tenofovir (TFV) and emtricitabine (FTC), by using a twice-weekly repeat challenge macaque model and showed that a preexposure vaginal application of gel with 1% TFV alone or in combination with 5% FTC fully protected macaques from a total of 20 exposures to simian-human immunodeficiency virus SF162p3. FTC and TFV were detected in plasma 30 min after vaginal application, suggesting rapid absorption. FTC was detected more frequently than TFV and showed higher levels, reflecting the fivefold-higher concentration of this drug than of TFV. Two of 12 repeatedly exposed but protected macaques showed limited T-cell priming, which did not induce resistance to infection when macaques were rechallenged. Thus, single drugs with durable antiviral activity can provide highly effective topical prophylaxis and overcome the need for noncoital use or for drug combinations which are more complex and costly to formulate and approve.


Journal of Acquired Immune Deficiency Syndromes | 2011

High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques.

Vishwanathan Sa; Patricia C. Guenthner; Lin Cy; Charles Dobard; Sharma S; Debra R. Adams; Ron A. Otten; Walid Heneine; Hendry Rm; Janet M. McNicholl; Ellen N. Kersh

Fluctuations in susceptibility to HIV or SHIV during the menstrual cycle are currently not fully documented. To address this, the time point of infection was determined in 19 adult female pigtail macaques vaginally challenged during their undisturbed menstrual cycles with repeated, low-dose SHIVSF162P3 exposures. Eighteen macaques (95%) first displayed viremia in the follicular phase, as compared with 1 macaque (5%) in the luteal phase (P < 0.0001). Due to a viral eclipse phase, we estimated a window of most frequent virus transmission between days 24 and 31 of the menstrual cycle, in the late luteal phase. Thus, susceptibility to vaginal SHIV infection is significantly elevated in the second half of the menstrual cycle when progesterone levels are high and when local immunity may be low. Such susceptibility windows have been postulated before but not definitively documented. Our data support the findings of higher susceptibility to HIV in women during progesterone-dominated periods including pregnancy and contraceptive use.


Nature Medicine | 2014

Targeting α4β7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection.

Siddappa N. Byrareddy; Brianne Kallam; James Arthos; Claudia Cicala; Fatima Nawaz; Joseph Hiatt; Ellen N. Kersh; Janet M. McNicholl; Debra L. Hanson; Keith A. Reimann; Markus Brameier; Lutz Walter; Kenneth Rogers; Ann E. Mayne; Paul Dunbar; Tara Villinger; Dawn M. Little; Tristram G. Parslow; Philip J. Santangelo; Francois Villinger; Anthony S. Fauci; Aftab A. Ansari

α4β7 integrin expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissues (GALT) and play a key role in HIV/SIV pathogenesis. The administration of an anti-α4β7 monoclonal antibody during acute infection protects macaques from transmission following repeated low-dose intra-vaginal challenges with SIVmac251. In treated animals that became infected the GALT was significantly protected and CD4+ T–cell numbers were maintained. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques.α4β7 integrin–expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissue (GALT) and have a key role in HIV and simian immunodeficiency virus (SIV) pathogenesis. We show here that the administration of an anti-α4β7 monoclonal antibody just prior to and during acute infection protects rhesus macaques from transmission following repeated low-dose intravaginal challenges with SIVmac251. In treated animals that became infected, the GALT was significantly protected from infection and CD4+ T cell numbers were maintained in both the blood and the GALT. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques.


Journal of Virology | 2011

Natural Substrate Concentrations Can Modulate the Prophylactic Efficacy of Nucleotide HIV Reverse Transcriptase Inhibitors

J. Gerardo García-Lerma; Wutyi Aung; Mian Er Cong; Qi Zheng; Ae S. Youngpairoj; James Mitchell; Angela Holder; Amy Martin; Susan Kuklenyik; Wei Luo; Carol Yen Chin Lin; Debra L. Hanson; Ellen N. Kersh; Chou Pong Pau; Adrian S. Ray; James F. Rooney; William A. Lee; Walid Heneine

ABSTRACT Preexposure prophylaxis (PrEP) with antiretroviral drugs is a novel human immunodeficiency virus (HIV) prevention strategy. It is generally thought that high systemic and mucosal drug levels are sufficient for protection. We investigated whether GS7340, a next-generation tenofovir (TFV) prodrug that effectively delivers tenofovir diphosphate (TFV-DP) to lymphoid cells and tissues, could protect macaques against repeated weekly rectal simian-human immunodeficiency virus (SHIV) exposures. Macaques received prophylactic GS7340 treatment 3 days prior to each virus exposure. At 3 days postdosing, TFV-DP concentrations in peripheral blood mononuclear cells (PBMCs) were about 50-fold higher than those seen with TFV disoproxil fumarate (TDF), and they remained above 1,000 fmol/106 cells for as long as 7 days. TFV-DP accumulated in lymphoid and rectal tissues, with concentrations at 3 days exceeding 500 fmol/106 mononuclear cells. Despite high mucosal and systemic TFV levels, GS7340 was not protective. Since TFV-DP blocks reverse transcription by competing with the natural dATP substrate, we measured dATP contents in peripheral lymphocytes, lymphoid tissue, and rectal mononuclear cells. Compared to those in circulating lymphocytes and lymphoid tissue, rectal lymphocytes had 100-fold higher dATP concentrations and dATP/TFV-DP ratios, likely reflecting the activated status of the cells and suggesting that TFV-DP may be less active at the rectal mucosa. Our results identify dATP/TFV-DP ratios as a possible correlate of protection by TFV and suggest that natural substrate concentrations at the mucosa will likely modulate the prophylactic efficacy of nucleotide reverse transcriptase inhibitors.


Journal of Medical Primatology | 2014

SHIV susceptibility changes during the menstrual cycle of pigtail macaques

Ellen N. Kersh; Tara Henning; Sundaram A. Vishwanathan; Monica Morris; Katherine Butler; Debra R. Adams; Patricia C. Guenthner; Priya Srinivasan; James M. Smith; Jessica Radzio; J. Gerardo García-Lerma; Charles Dobard; Walid Heneine; Janet M. McNicholl

Hormonal changes during menstrual cycling may affect susceptibility to HIV.


Journal of Virology | 2013

Lack of Prophylactic Efficacy of Oral Maraviroc in Macaques despite High Drug Concentrations in Rectal Tissues

Ivana Massud; Wutyi Aung; Amy Martin; Shanon Bachman; James Mitchell; Rachael D. Aubert; Theodros Tsegaye; Ellen N. Kersh; Chou Pong Pau; Walid Heneine; J. Gerardo García-Lerma

ABSTRACT Maraviroc (MVC) is a potent CCR5 coreceptor antagonist that is in clinical testing for daily oral pre-exposure prophylaxis (PrEP) for HIV prevention. We used a macaque model consisting of weekly SHIV162p3 exposures to evaluate the efficacy of oral MVC in preventing rectal SHIV transmission. MVC dosing was informed by the pharmacokinetic profile seen in blood and rectal tissues and consisted of a human-equivalent dose given 24 h before virus exposure, followed by a booster postexposure dose. In rectal secretions, MVC peaked at 24 h (10,242 ng/ml) with concentrations at 48 h that were about 40 times those required to block SHIV infection of peripheral blood mononuclear cells (PBMCs) in vitro. Median MVC concentrations in rectal tissues at 24 h (1,404 ng/g) were 30 and 10 times those achieved in vaginal or lymphoid tissues, respectively. MVC significantly reduced macrophage inflammatory protein 1β-induced CCR5 internalization in rectal mononuclear cells, an indication of efficient binding to CCR5 in rectal lymphocytes. The half-life of CCR5-bound MVC in PBMCs was 2.6 days. Despite this favorable profile, 5/6 treated macaques were infected during five rectal SHIV exposures as were 3/4 controls. MVC treatment was associated with a significant increase in the percentage of CD3+/CCR5+ cells in blood. We show that high and durable MVC concentrations in rectal tissues are not sufficient to prevent SHIV infection in macaques. The increases in CD3+/CCR5+ cells seen during MVC treatment point to unique immunological effects of CCR5 inhibition by MVC. The implications of these immunological effects on PrEP with MVC require further evaluation.


The Journal of Infectious Diseases | 2014

Increased Susceptibility to Vaginal Simian/Human Immunodeficiency Virus Transmission in Pig-tailed Macaques Coinfected With Chlamydia trachomatis and Trichomonas vaginalis

Tara R. Henning; Katherine Butler; Debra L. Hanson; Gail L. Sturdevant; Shanon Ellis; Elizabeth M. Sweeney; James R. Mitchell; Frank Deyounks; Christi Phillips; Carol E. Farshy; Yetunde Fakile; John R. Papp; W. Evan Secor; Harlan D. Caldwell; Dorothy L. Patton; Janet M. McNicholl; Ellen N. Kersh

BACKGROUND Sexually transmitted infections (STIs) are associated with an increased risk of human immunodeficiency virus (HIV) infection, but their biological effect on HIV susceptibility is not fully understood. METHODS Female pig-tailed macaques inoculated with Chlamydia trachomatis and Trichomonas vaginalis (n = 9) or medium (controls; n = 7) were repeatedly challenged intravaginally with SHIVSF162p3. Virus levels were evaluated by real-time polymerase chain reaction, plasma and genital cytokine levels by Luminex assays, and STI clinical signs by colposcopy. RESULTS Simian/HIV (SHIV) susceptibility was enhanced in STI-positive macaques (P = .04, by the log-rank test; relative risk, 2.5 [95% confidence interval, 1.1-5.6]). All STI-positive macaques were SHIV infected, whereas 3 controls (43%) remained uninfected. Moreover, relative to STI-negative animals, SHIV infections occurred earlier in the menstrual cycle in STI-positive macaques (P = .01, by the Wilcoxon test). Levels of inflammatory cytokines (interferon γ, interleukin 6, and granulocyte colony-stimulating factor [G-CSF]) were higher in STI-positive macaques during STI inoculation and SHIV exposure periods (P ≤ .05, by the Wilcoxon test). CONCLUSIONS C. trachomatis and T. vaginalis infection increase the susceptibility to SHIV, likely because of prolonged genital tract inflammation. These novel data demonstrate a biological link between these nonulcerative STIs and the risk of SHIV infection, supporting epidemiological associations of HIV and STIs. This study establishes a macaque model for studies of high-risk HIV transmission and prevention.


Journal of Medical Primatology | 2011

Development of a pigtail macaque model of sexually transmitted infection/HIV coinfection using Chlamydia trachomatis, Trichomonas vaginalis, and SHIV(SF162P3).

Tara Henning; Yetunde Fakile; Christi Phillips; Elizabeth Sweeney; James Mitchell; Dorothy L. Patton; Gail Sturdevant; Harlan D. Caldwell; W. Evan Secor; John R. Papp; R. Michael Hendry; Janet M. McNicholl; Ellen N. Kersh

Background  Sexually transmitted infections (STIs) are associated with an increased risk of HIV infection. To model the interaction between STIs and HIV infection, we evaluated the capacity of the pigtail macaque model to sustain triple infection with Trichomonas vaginalis, Chlamydia trachomatis, and SHIVSF162P3.


Journal of Acquired Immune Deficiency Syndromes | 2010

Resistance to Simian HIV infection is associated with high plasma interleukin-8, RANTES and Eotaxin in a macaque model of repeated virus challenges.

Nattawan Promadej-Lanier; Debra L. Hanson; Priya Srinivasan; Wei Luo; Debra R. Adams; Patricia C. Guenthner; Sal Butera; Ron A. Otten; Ellen N. Kersh

Animal models for research on susceptibility to HIV are currently not available. Here we explore whether a macaque model of repeated low-dose rectal or vaginal virus challenges could be employed. We tested the hypothesis that susceptibility to Simian HIV is not merely stochastic in this model but rather is associated with identifiable host factors. Forty macaques required a median of 3.5 SHIVSF162P3 challenges for infection. We studied the association of their susceptibility with 13 predisposing plasma cytokines/chemokines (RANTES, Eotaxin, monocyte chemoattractant protein (MCP)-1, IL-7, MIP-1β, TNF-α, MIP-1α, granulocyte colony-stimulating factor, IL-8, interferon-γ, IL-17, IL-1β, IL-6). Higher plasma RANTES, IL-8, and Eotaxin were associated with lower susceptibility, that is, higher resistance to infection. In a group of macaques with low IL-8 and RANTES, a median 3 exposures were required to infect; whereas, when either IL-8 or RANTES were high, a median 12 exposures were required. Thus, susceptibility was associated with identifiable discrete host factors and was not stochastic. In addition, the macaque model identified key human resistance factors (RANTES, Eotaxin), but also revealed a novel association with resistance (IL-8). Future direct evaluation of these or other factors in the animal model may be beneficial for developing new immunomodulation strategies for HIV prevention.


Journal of Antimicrobial Chemotherapy | 2009

Evaluation of the lymphocyte trafficking drug FTY720 in SHIVSF162P3-infected rhesus macaques

Ellen N. Kersh; Wei Luo; Debra R. Adams; James Mitchell; J. Gerardo García-Lerma; Sal Butera; Thomas M. Folks; Ron A. Otten

OBJECTIVES FTY720 causes retention of lymphocytes in lymphatic tissues. Previous studies revealed that FTY720 can decrease or eliminate chronic viral infections of mice. We address here whether therapeutic use of FTY720 in simian human immunodeficiency virus (SHIV)-infected rhesus macaques could also decrease viraemia. METHODS FTY720 was administered intravenously to three SHIV(SF162P3)-infected macaques at 39, 7 or 6 weeks of infection; three control macaques (47, 48 or 6 weeks of infection) did not receive drug. FTY720 was given at 0.004 mg/kg on days 0, 1, 2, 14, 15 and 16, followed by 0.1 mg/kg on days 28, 29, 30, 42, 43 and 44. Blood was collected seven times throughout and four times during 47 days of follow-up. RESULTS Only the 0.1 mg/kg dose resulted in a reduction in mean blood CD4+ T cells and B cells (to 33% and 27% of pre-drug levels, P=0.0024 and 0.003, respectively). FTY720 treatment did not lead to significant deviations from the natural pattern of viral control. Plasma viraemia progressed from a range of 10(4)-10(2) copies/mL before treatment to 10(4)-temporarily undetectable levels on the last day of treatment. SHIV(SF162P3) was not eliminated, however, as plasma viraemia and proviral DNA persisted during the follow-up. No significant alterations in T cell activity were noted throughout the drug course. CONCLUSIONS FTY720 administration had no detectable therapeutic effect at the doses and schedules outlined here, although blood CD4+ T cells and B cells were effectively reduced. Future work might reveal whether FTY720 could be beneficial in more pathogenic SHIV, simian immunodeficiency virus or HIV infections.

Collaboration


Dive into the Ellen N. Kersh's collaboration.

Top Co-Authors

Avatar

Janet M. McNicholl

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Katherine Butler

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Debra L. Hanson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Sundaram A. Vishwanathan

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Walid Heneine

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

J. Gerardo García-Lerma

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Wei Luo

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Debra R. Adams

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James Mitchell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Tara Henning

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge