Ellen Schulz
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ellen Schulz.
PLOS ONE | 2013
Ellen Schulz; Vanessa Piotrowski; Marcus Clauss; Marcus Mau; Gildas Merceron; Thomas M. Kaiser
Dental microwear and 3D surface texture analyses are useful in reconstructing herbivore diets, with scratches usually interpreted as indicators of grass dominated diets and pits as indicators of browse. We conducted feeding experiments with four groups of rabbits (Oryctolagus cuniculus) each fed a different uniform, pelleted diet (lucerne, lucerne & oats, grass & oats, grass). The lowest silica content was measured in the lucerne and the highest in the grass diet. After 25 weeks of exposure to the diets, dental castings were made of the rabbits lower molars. Occlusal surfaces were then investigated using dental microwear and 3D areal surface texture analysis. In terms of traditional microwear, we found our hypothesis supported, as the grass group showed a high proportion of (long) “scratches” and the lucerne group a high proportion of “pits”. Regardless of the uniform diets, variability of microwear and surface textures was higher when silica content was low. A high variability in microwear and texture analysis thus need not represent dietary diversity, but can also be related to a uniform, low-abrasion diet. The uniformity or variability of microwear/texture analysis results thus might represent varying degrees of abrasion and attrition rather than a variety of diet items per se.
Scanning | 2010
Ellen Schulz; Ivan Calandra; Thomas M. Kaiser
Mammals inhabit all types of environments and have evolved chewing systems capable of processing a huge variety of structurally diverse food components. Surface textures of cheek teeth should thus reflect the mechanisms of wear as well as the functional traits involved. We employed surface textures parameters from ISO/DIS 25178 and scale-sensitive fractal analysis (SSFA) to quantify dental wear in herbivorous mammals at the level of an individual wear enamel facet. We evaluated cheek dentitions of two grazing ungulates: the Blue Wildebeest (Connochaetes taurinus) and the Grevys Zebra (Equus grevyi). Both inhabit the east African grassland savanna habitat, but they belong to fundamentally different taxonomic units. We tested the hypothesis that the foregut fermenting wildebeest and the hindgut fermenting zebra show functional traits in their dentitions that relate to their specific mode of food-composition processing and digestion. In general, surface texture parameters from SSFA as well as ISO/DIS 25178 indicated that individual enamel ridges acting as crushing blades and individual wear facets of upper cheek teeth are significantly different in surface textures in the zebra when compared with the wildebeest. We interpreted the complexity and anisotropy signals to be clearly related to the brittle, dry grass component in the diet of the zebra, unlike the wildebeest, which ingests a more heterogeneous diet including fresh grass and herbs. Thus, SSFA and ISO parameters allow distinctions within the subtle dietary strategies that evolved in herbivorous ungulates with fundamentally different systematic affinities but which exploit a similar dietary niche.
Journal of Human Evolution | 2012
Ivan Calandra; Ellen Schulz; Mona Pinnow; Susanne Krohn; Thomas M. Kaiser
3D dental microtexture analysis is a powerful tool for reconstructing the diets of extinct primates. This method is based on the comparison of fossils with extant species of known diet. The diets of primates are highly diversified and include fruits, seeds, grass, tree leaves, bark, roots, tubers, and animal resources. Fruits remain the main component in the diets of most primates. We tested whether the proportion of fruit consumed is correlated with dental microtexture. Two methods of microtexture analysis, the scale-sensitive fractal analysis (SSFA) and the Dental Areal Surface Texture Analysis (DASTA; after ISO/FDIS 25178-2), were applied to specimens of eight primate species (Alouatta seniculus, Gorilla gorilla, Lophocebus albigena, Macaca fascicularis, Pan troglodytes, Papio cynocephalus, Pongo abelii, Theropithecus gelada). These species largely differ in the mean annual proportion of fruit (from 0 to 90%) in their diet, as well as in their consumption of other hard items (seeds, bark, and insect cuticles) and of abrasive plants. We find the complexity and heterogeneity of textures (SSFA) to correlate with the proportion of fruits consumed. Textural fill volume (SSFA) indicates the proportion of both fruits and other hard items processed. Furthermore, anisotropy (SSFA) relates to the consumption of abrasive plants like grass and other monocots. ISO parameters valley height, root mean square height, material volume, density of peaks, and closed hill and dale areas (DASTA) describe the functional interaction between food items and enamel facets during mastication. The shallow, plastic deformation of enamel surfaces induced by small hard particles, such as phytoliths or dust, results in flat microtexture relief, whereas the brittle, deep fracture caused by large hard items such as hard seeds creates larger relief.
Journal of Human Evolution | 2009
Florent Rivals; Ellen Schulz; Thomas M. Kaiser
Characterization of settlement patterns is one of the core concepts in archeological research. The duration of an occupation is usually estimated through zooarchaeology (e.g., density of remains, cementochronology) and is limited by taphonomic processes and sample size. We propose a new application of dental wear methods for estimating the relative duration of hominid settlements in Paleolithic sites. Dental microwear is known to be sensitive to seasonal changes in diet. In this new application we use microwear scratch counts to estimate the variation in the dietary signal of various ungulate species. We propose that this variation is correlated to the duration of site occupation. Each season presents a limited and different set of food resources available in the environment. If animals are sampled only during a specific season (i.e., during a short term occupation) then they would be expected to have a dental wear signal with little variation. On the other hand, a greater diversity of food is available across different seasons. Therefore, if game animals are hunted through various seasons during long occupation periods, then they would be expected to have more variable dental wear. The application of this technique to the Middle Paleolithic site of Arago Cave (France), where various types of occupations occurred, supports this hypothesis. When combined with multidisciplinary studies of archaeological localities (seasonality in particular), this new application of dental wear analysis presents valuable information about hominid settlements and behavior. We contextualize our data with results from lithic and zooarchaeological analyses from Arago. These results reveal the presence of both high and low mobility groups of Homo heidelbergensis throughout the sequence of the Arago Cave.
Journal of Experimental Zoology | 2014
Jacqueline Müller; Marcus Clauss; Daryl Codron; Ellen Schulz; Jürgen Hummel; Mikael Fortelius; Patrick R. Kircher; Jean-Michel Hatt
Although patterns of tooth wear are crucial in palaeo-reconstructions, and dental wear abnormalities are important in veterinary medicine, experimental investigations on the relationship between diet abrasiveness and tooth wear are rare. Here, we investigated the effect of four different pelleted diets of increasing abrasiveness (due to both internal [phytoliths] and external abrasives [sand]) or whole grass hay fed for 2 weeks each in random order to 16 rabbits (Oryctolagus cuniculus) on incisor and premolar growth and wear, and incisor and cheek tooth length. Wear and tooth length differed between diets, with significant effects of both internal and external abrasives. While diet abrasiveness was linked to tooth length for all tooth positions, whole forage had an additional effect on upper incisor length only. Tooth growth was strongly related to tooth wear and differed correspondingly between diets and tooth positions. At 1.4-3.2 mm/week, the growth of cheek teeth measured in this study was higher than previously reported for rabbits. Dental abnormalities were most distinct on the diet with sand. This study demonstrates that concepts of constant tooth growth in rabbits requiring consistent wear are inappropriate, and that diet form (whole vs. pelleted) does not necessarily affect cheek teeth. Irrespective of the strong effect of external abrasives, internal abrasives have the potential to induce wear and hence exert selective pressure in evolution. Detailed differences in wear effects between tooth positions allow inferences about the mastication process. Elucidating feedback mechanisms that link growth to tooth-specific wear represents a promising area of future research.
Proceedings of the Royal Society of London B: Biological Sciences | 2010
Gildas Merceron; Thomas M. Kaiser; Dimitris S. Kostopoulos; Ellen Schulz
The successful evolutionary radiations of European hominoids and pliopithecoids came to an end during the Late Miocene. Using ruminant diets as environmental proxies, it becomes possible to detect variations in vegetation over time with the potential to explain fluctuations in primate diversity along a NW–SE European transect. Analysis shows that ruminants had diverse diets when primate diversity reached its peak, with more grazers in eastern Europe and more browsers farther west. After the drop in primate diversity, grazers accounted for a greater part of western and central European communities. Eastwards, the converse trend was evident with more browsing ruminants. These opposite trends indicate habitat loss and an increase in environmental uniformity that may have severely favoured the decline of primate diversity.
PLOS ONE | 2013
Lucy A. Taylor; Thomas M. Kaiser; Christoph Schwitzer; Dennis W. H. Müller; Daryl Codron; Marcus Clauss; Ellen Schulz
Extant rhinos are the largest extant herbivores exhibiting dietary specialisations for both browse and grass. However, the adaptive value of the wear-induced tooth morphology in rhinos has not been widely studied, and data on individual cusp and tooth positions have rarely been published. We evaluated upper cheek dentition of browsing Diceros bicornis and Rhinoceros sondaicus, mixed-feeding R. unicornis and grazing Ceratotherium simum using an extended mesowear method adapted for rhinos. We included single cusp scoring (EM(R)-S) to investigate inter-cusp and inter-tooth wear patterns. In accordance with previous reports, general mesowear patterns in D. bicornis and R. sondaicus were attrition-dominated and C. simum abrasion-dominated, reflecting their respective diets. Mesowear patterns for R. unicornis were more attrition-dominated than anticipated by the grass-dominated diet, which may indicate a low intake of environmental abrasives. EM(R)-S increased differentiation power compared to classical mesowear, with significant inter-cusp and inter-tooth differences detected. In D. bicornis, the anterior cusp was consistently more abrasion-dominated than the posterior. Wear differences in cusp position may relate to morphological adaptations to dietary regimes. Heterogeneous occlusal surfaces may facilitate the comminution of heterogeneous browse, whereas uniform, broad grinding surfaces may enhance the comminution of physically more homogeneous grass. A negative tooth wear gradient was found in D. bicornis, R. sondaicus and R. unicornis, with wear patterns becoming less abrasion-dominated from premolars to molars. No such gradients were evident in C. simum which displayed a uniform wear pattern. In browsers, premolars may be exposed to higher relative grit loads, which may result in the development of wear gradients. The second premolar may also have a role in food cropping. In grazers, high absolute amounts of ingested abrasives may override other signals, leading to a uniform wear pattern and dental function along the tooth row, which could relate to the observed evolution towards homodonty.
Journal of Human Evolution | 2007
Gildas Merceron; Ellen Schulz; László Kordos; Thomas M. Kaiser
Mammal Review | 2013
Thomas M. Kaiser; Dennis W. H. Müller; Mikael Fortelius; Ellen Schulz; Daryl Codron; Marcus Clauss
Mammalian Biology | 2009
Thomas M. Kaiser; Juliane Brasch; J C Castell; Ellen Schulz; Marcus Clauss