Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Calandra is active.

Publication


Featured researches published by Ivan Calandra.


Geology | 2010

Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary

Jean Vannier; Ivan Calandra; Christian Gaillard; Anna Żylińska

The major evolutionary events that characterize the Precambrian–Cambrian transition are accompanied by profound ecological changes in the composition of benthic communities, the nature of the substrate, and the occupation of marine ecospace. The increased animal activity on and within the substrate is attested to by numerous trace fossils, such as the cosmopolitan Treptichnus pedum whose fi rst appearance is used as the global stratotype section and point (GSSP) to mark the base of the Cambrian. In spite of its major importance in biostratigraphy, the maker of Treptichnus trace fossils, and more generally of treptichnids, has long remained an enigma. Treptichnids were subhorizontal burrow systems produced in the subsurface and had a worldwide distribution throughout the Cambrian. Here we show, by using experimental ichnology, that the treptichnid burrow systems were most probably produced by priapulid worms or by worms that used the same locomotory mechanisms as the Recent priapulids (e.g., Priapulus). Their typical three-dimensional morphology with repeated arcuate probing branches suggests that their function was related to the feeding strategy of the worm such as predation or scavenging upon small epibenthic or endobenthic invertebrates. This interpretation is strongly supported by the preserved gut contents of Cambrian priapulids from the Burgess Shale Lagerstatte that contain effectively a variety of small epibenthic prey. The antiquity of treptichnids would designate priapulids as one of the earliest infaunal colonizers of the substrate that possibly interacted with epibenthic communities, thus playing a leading role (1) in the construction of the early marine food chain, and (2) as important subhorizontal bioturbators in the early stages of the “Cambrian Substrate Revolution.”


Scanning | 2010

Applying tribology to teeth of hoofed mammals

Ellen Schulz; Ivan Calandra; Thomas M. Kaiser

Mammals inhabit all types of environments and have evolved chewing systems capable of processing a huge variety of structurally diverse food components. Surface textures of cheek teeth should thus reflect the mechanisms of wear as well as the functional traits involved. We employed surface textures parameters from ISO/DIS 25178 and scale-sensitive fractal analysis (SSFA) to quantify dental wear in herbivorous mammals at the level of an individual wear enamel facet. We evaluated cheek dentitions of two grazing ungulates: the Blue Wildebeest (Connochaetes taurinus) and the Grevys Zebra (Equus grevyi). Both inhabit the east African grassland savanna habitat, but they belong to fundamentally different taxonomic units. We tested the hypothesis that the foregut fermenting wildebeest and the hindgut fermenting zebra show functional traits in their dentitions that relate to their specific mode of food-composition processing and digestion. In general, surface texture parameters from SSFA as well as ISO/DIS 25178 indicated that individual enamel ridges acting as crushing blades and individual wear facets of upper cheek teeth are significantly different in surface textures in the zebra when compared with the wildebeest. We interpreted the complexity and anisotropy signals to be clearly related to the brittle, dry grass component in the diet of the zebra, unlike the wildebeest, which ingests a more heterogeneous diet including fresh grass and herbs. Thus, SSFA and ISO parameters allow distinctions within the subtle dietary strategies that evolved in herbivorous ungulates with fundamentally different systematic affinities but which exploit a similar dietary niche.


Journal of Human Evolution | 2012

Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates.

Ivan Calandra; Ellen Schulz; Mona Pinnow; Susanne Krohn; Thomas M. Kaiser

3D dental microtexture analysis is a powerful tool for reconstructing the diets of extinct primates. This method is based on the comparison of fossils with extant species of known diet. The diets of primates are highly diversified and include fruits, seeds, grass, tree leaves, bark, roots, tubers, and animal resources. Fruits remain the main component in the diets of most primates. We tested whether the proportion of fruit consumed is correlated with dental microtexture. Two methods of microtexture analysis, the scale-sensitive fractal analysis (SSFA) and the Dental Areal Surface Texture Analysis (DASTA; after ISO/FDIS 25178-2), were applied to specimens of eight primate species (Alouatta seniculus, Gorilla gorilla, Lophocebus albigena, Macaca fascicularis, Pan troglodytes, Papio cynocephalus, Pongo abelii, Theropithecus gelada). These species largely differ in the mean annual proportion of fruit (from 0 to 90%) in their diet, as well as in their consumption of other hard items (seeds, bark, and insect cuticles) and of abrasive plants. We find the complexity and heterogeneity of textures (SSFA) to correlate with the proportion of fruits consumed. Textural fill volume (SSFA) indicates the proportion of both fruits and other hard items processed. Furthermore, anisotropy (SSFA) relates to the consumption of abrasive plants like grass and other monocots. ISO parameters valley height, root mean square height, material volume, density of peaks, and closed hill and dale areas (DASTA) describe the functional interaction between food items and enamel facets during mastication. The shallow, plastic deformation of enamel surfaces induced by small hard particles, such as phytoliths or dust, results in flat microtexture relief, whereas the brittle, deep fracture caused by large hard items such as hard seeds creates larger relief.


The Journal of Experimental Biology | 2016

Silicon-based plant defences, tooth wear and voles

Ivan Calandra; Karol Zub; Paulina A. Szafrańska; Andrzej Zalewski; Gildas Merceron

ABSTRACT Plant–herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material. Highlighted Article: Increased abrasiveness in the diet of voles, assessed by DMTA, could be caused by high phytolith concentration of plants in response to intense grazing, and could in turn help provoke vole population crashes.


Journal of Mammalian Evolution | 2016

Morphology is not Destiny: Discrepancy between Form, Function and Dietary Adaptation in Bovid Cheek Teeth

Juan Pablo Gailer; Ivan Calandra; Ellen Schulz-Kornas; Thomas M. Kaiser

Mammal teeth have evolved morphologies that allow for the efficient mechanical processing of different foods, therefore increasing dietary energy uptake for maintenance of high metabolic demands. However, individuals masticate foods with biomechanical properties at odds with the optimal function of a given tooth morphology. Here, we investigate tooth form and function using two quantitative 3D methods at different scales on the same individuals of nine bovid species. Dental topometry quantifies the gross morphology, and therefore, reflects evolutionary adaptive patterns. Surface texture analysis infers mechanical occlusal events, which reflect the actual tooth function, and is free from the influence of morphology. We found that tough foods can be satisfactorily exploited by grazing species with enamel ridge morphologies not more complex than those found in intermediate feeders and browsers. Thus, the evolution of enamel complexity is likely determined by a balance between adaptation and constraints. Wider enamel ridges seem to be a common functional trait in bovids to compensate for severe wear from abrasive foods and/or chipping from hard foods. Our results demonstrate that supposedly essential functional adaptations in tooth morphology may not be required to process food efficiently. This emphasizes the large plasticity between “optimal” morphology and the potential function of the tooth, and underscores the need to appreciate (apparently) maladaptive structures in mammalian evolution as nevertheless effective functioning units.


Science of The Total Environment | 2016

Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches

Arnaud R. Schneider; Benjamin Cancès; Marie Ponthieu; Sophie Sobanska; Marc F. Benedetti; Olivier Pourret; Alexandra Conreux; Ivan Calandra; Blandine Martinet; Xavier Morvan; Maxime Gommeaux; Béatrice Marin

Smelting activities are one of the most common sources of trace elements in the environment. The aim of this study was to determine the lead distribution in upper horizons (0-5 and 5-10cm) of acidic soils in the vicinity of a lead-acid battery recycling plant in northern France. The combination of chemical methods (sequential extractions), physical methods (Raman microspectroscopy and scanning electron microscopy with an energy dispersive spectrometer) and multi-surface complexation modelling enabled an assessment of the behaviour of Pb. Regardless of the studied soil, none of the Pb-bearing phases commonly identified in similarly polluted environments (e.g., anglesite) were observed. Lead was mainly associated with organic matter and manganese oxides. The association of Pb with these soil constituents can be interpreted as evidence of Pb redistribution in the studied soils following smelter particle deposition.


Scientific Reports | 2016

Tooth wear as a means to quantify intra-specific variations in diet and chewing movements

Ivan Calandra; Gaëlle Labonne; Ellen Schulz-Kornas; Thomas M. Kaiser; Sophie Montuire

In mammals, tooth function, and its efficiency, depends both on the mechanical properties of the food and on chewing dynamics. These aspects have rarely been studied in combination and/or at the intra-specific level. Here we applied 3D dental surface texture analysis to a sample of field voles (Microtus agrestis) trapped from Finnish Lapland at different seasons and localities to test for inter-population variations. We also explored intra-individual variation in chewing dynamics by analysing two facets on the second upper molars. Our results confirm that the two localities have similar environments and that the voles feed on the same items there. On the other hand, the texture data suggest that diets are seasonally variable, probably due to varying concentrations of abrasives. Lastly, the textures on the buccal facets are more isotropic and their direction deviates more from the mesial chewing direction than the lingual facets. We interpret these results as reflecting food, rather than chewing, movements, where food particles are more guided on the lingual side of the molars. This has implications for the application of dental microwear analysis to fossils: only homologous facets can be compared, even when the molar row seems to constitute a functional unit.


Ecology and Evolution | 2015

Isotopic partitioning by small mammals in the subnivium

Ivan Calandra; Gaëlle Labonne; Olivier Mathieu; Heikki Henttonen; Jean Lévêque; Marie-Jeanne Milloux; Elodie Renvoisé; Sophie Montuire; Nicolas Navarro

Abstract In the Arctic, food limitation is one of the driving factors behind small mammal population fluctuations. Active throughout the year, voles and lemmings (arvicoline rodents) are central prey in arctic food webs. Snow cover, however, makes the estimation of their winter diet challenging. We analyzed the isotopic composition of ever‐growing incisors from species of voles and lemmings in northern Finland trapped in the spring and autumn. We found that resources appear to be reasonably partitioned and largely congruent with phylogeny. Our results reveal that winter resource use can be inferred from the tooth isotopic composition of rodents sampled in the spring, when trapping can be conducted, and that resources appear to be partitioned via competition under the snow.


Naturwissenschaften | 2008

How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe

Ivan Calandra; Ursula B. Göhlich; Gildas Merceron


Mammal Review | 2016

Dental microwear texture analysis in mammalian ecology

Ivan Calandra; Gildas Merceron

Collaboration


Dive into the Ivan Calandra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaëlle Labonne

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar

Gildas Merceron

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Maxime Gommeaux

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge