Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elliot J. Lefkowitz is active.

Publication


Featured researches published by Elliot J. Lefkowitz.


Journal of Bacteriology | 2001

Genome of the Bacterium Streptococcus pneumoniae Strain R6

JoAnn Hoskins; William E. Alborn; Jeffrey S. Arnold; Larry C. Blaszczak; Stanley G. Burgett; Bradley S. Dehoff; Shawn T. Estrem; Lori Fritz; Dong-Jing Fu; Wendy Fuller; Chad Geringer; Raymond Gilmour; Jennifer S. Glass; Hamid Khoja; Angelika Regina Kraft; Robert E. Lagace; Donald J. LeBlanc; Linda N. Lee; Elliot J. Lefkowitz; Jin Lu; Patti Matsushima; Scott M. McAhren; Margaret Ann Mchenney; Kevin McLeaster; Christopher W. Mundy; Thalia I. Nicas; Franklin H. Norris; MaryJeanne O'Gara; Robert B. Peery; Gregory T. Robertson

Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development.


Archives of Virology | 2009

Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Dennis H. Bamford; Mya Breitbart; Andrew J. Davison; Said A. Ghabrial; Alexander E. Gorbalenya; Nick J. Knowles; Peter J. Krell; Rob Lavigne; David Prangishvili; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Eric B. Carstens

Changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2015 are listed.


Journal of Bacteriology | 2004

The Genome Sequence of Mycoplasma hyopneumoniae Strain 232, the Agent of Swine Mycoplasmosis

F. Chris Minion; Elliot J. Lefkowitz; Melissa L. Madsen; Barbara J. Cleary; Steven Swartzell; Gregory G. Mahairas

We present the complete genome sequence of Mycoplasma hyopneumoniae, an important member of the porcine respiratory disease complex. The genome is composed of 892,758 bp and has an average G+C content of 28.6 mol%. There are 692 predicted protein coding sequences, the average protein size is 388 amino acids, and the mean coding density is 91%. Functions have been assigned to 304 (44%) of the predicted protein coding sequences, while 261 (38%) of the proteins are conserved hypothetical proteins and 127 (18%) are unique hypothetical proteins. There is a single 16S-23S rRNA operon, and there are 30 tRNA coding sequences. The cilium adhesin gene has six paralogs in the genome, only one of which contains the cilium binding site. The companion gene, P102, also has six paralogs. Gene families constitute 26.3% of the total coding sequences, and the largest family is the 34-member ABC transporter family. Protein secretion occurs through a truncated pathway consisting of SecA, SecY, SecD, PrsA, DnaK, Tig, and LepA. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The DnaK-DnaJ-GrpR complex is intact, providing the only control over protein folding. There are several proteases that might serve as virulence factors, and there are 53 coding sequences with prokaryotic lipoprotein lipid attachment sites. Unlike other mycoplasmas, M. hyopneumoniae contains few genes with tandem repeat sequences that could be involved in phase switching or antigenic variation. Thus, it is not clear how M. hyopneumoniae evades the immune response and establishes a chronic infection.


Archives of Virology | 2017

Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Balázs Harrach; Robert L. Harrison; Nick J. Knowles; Andrew M. Kropinski; Mart Krupovic; Jens H. Kuhn; Arcady Mushegian; Max L. Nibert; Sead Sabanadzovic; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Arvind Varsani; Francisco Murilo Zerbini; Alexander E. Gorbalenya; Andrew J. Davison

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes

Erika Assarsson; Jason Greenbaum; Magnus Sundström; Lana Schaffer; Jennifer A. Hammond; Valerie Pasquetto; Carla Oseroff; R. Curtis Hendrickson; Elliot J. Lefkowitz; David C. Tscharke; John Sidney; Howard M. Grey; Steven R. Head; Bjoern Peters; Alessandro Sette

Vaccinia virus is the prototypic orthopoxvirus and was the vaccine used to eradicate smallpox, yet the expression profiles of many of its genes remain unknown. Using a genome tiling array approach, we simultaneously measured the expression levels of all 223 annotated vaccinia virus genes during infection and determined their kinetics. For 95% of these genes, significant transcript levels were detected. Most remarkably, classification of the genes by their expression profiles revealed 35 genes exhibiting immediate-early expression. Although a similar kinetic class has been described for other virus families, to our knowledge, this is the first demonstration of its existence in orthopoxviruses. Despite expression levels higher than for genes in the other three kinetic classes, the functions of more than half of these remain unknown. Additionally, genes within each kinetic class were spatially grouped together in the genome. This genome-wide picture of transcription alters our understanding of how orthopoxviruses regulate gene expression.


Nature Reviews Microbiology | 2017

Consensus statement: Virus taxonomy in the age of metagenomics

Peter Simmonds; M. J. Adams; Mária Benkő; Mya Breitbart; J. Rodney Brister; Eric B. Carstens; Andrew J. Davison; Eric Delwart; Alexander E. Gorbalenya; Balázs Harrach; Roger Hull; Andrew M. Q. King; Eugene V. Koonin; Mart Krupovic; Jens H. Kuhn; Elliot J. Lefkowitz; Max L. Nibert; Richard J. Orton; Marilyn J. Roossinck; Sead Sabanadzovic; Matthew B. Sullivan; Curtis A. Suttle; Robert B. Tesh; René van der Vlugt; Arvind Varsani; F. Murilo Zerbini

The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.


Virology | 2003

The genomic sequence of ectromelia virus, the causative agent of mousepox.

Nanhai Chen; Maria I. Danila; Zehua Feng; R. Mark L. Buller; Chunlin Wang; Xiaosi Han; Elliot J. Lefkowitz; Chris Upton

Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.


Journal of Clinical Microbiology | 2006

Genetic variability in the G protein gene of group A and B respiratory syncytial viruses from India.

Shama Parveen; Wayne M. Sullender; Karen B. Fowler; Elliot J. Lefkowitz; S. K. Kapoor; Shobha Broor

ABSTRACT Respiratory syncytial virus (RSV) is the most commonly identified viral agent of acute respiratory tract infection (ARI) of young children and causes repeat infections throughout life. Limited data are available on the molecular epidemiology of RSV from developing countries, including India. This study reports on the genetic variability in the glycoprotein G gene among RSV isolates from India. Reverse transcription-PCR for a region of the RSV G protein gene was done with nasopharyngeal aspirates (NPAs) collected in a prospective longitudinal study in two rural villages near Delhi and from children with ARI seen in an urban hospital. Nucleotide sequence comparisons among 48 samples demonstrated a higher prevalence of group A (77%) than group B (23%) RSV isolates. The level of genetic variability was higher among the group A viruses (up to 14%) than among the group B viruses (up to 2%). Phylogenetic analysis revealed that both the GA2 and GA5 group A RSV genotypes were prevalent during the 2002-2003 season and that genotype GA5 was predominant in the 2003-2004 season, whereas during the 2004-2005 season both genotype GA5 and genotype BA, a newly identified group B genotype, cocirculated in almost equal proportions. Comparison of the nonsynonymous mutation-to-synonymous mutation ratios (dN/dS) revealed greater evidence for selective pressure between the GA2 and GA5 genotypes (dN/dS, 1.78) than within the genotypes (dN/dS, 0.69). These are among the first molecular analyses of RSV strains from the second most populous country in the world and will be useful for comparisons to candidate vaccine strains.


Journal of Immunology | 2007

Vaccinia Virus-Specific CD4+ T Cell Responses Target a Set of Antigens Largely Distinct from Those Targeted by CD8+ T Cell Responses

Magdalini Moutaftsi; Huynh-Hoa Bui; Bjoern Peters; John Sidney; Shahram Salek-Ardakani; Carla Oseroff; Valerie Pasquetto; Shane Crotty; Michael Croft; Elliot J. Lefkowitz; Howard M. Grey; Alessandro Sette

Recent studies have defined vaccinia virus (VACV)-specific CD8+ T cell epitopes in mice and humans. However, little is known about the epitope specificities of CD4+ T cell responses. In this study, we identified 14 I-Ab-restricted VACV-specific CD4+ T cell epitopes by screening a large set of 2146 different 15-mer peptides in C57BL/6 mice. These epitopes account for ∼20% of the total anti-VACV CD4+ T cell response and are derived from 13 different viral proteins. Surprisingly, none of the CD4+ T cell epitopes identified was derived from VACV virulence factors. Although early Ags were recognized, late Ags predominated as CD4+ T cell targets. These results are in contrast to what was previously found in CD8+ T cells responses, where early Ags, including virulence factors, were prominently recognized. Taken together, these results highlight fundamental differences in immunodominance of CD4+ and CD8+ T cell responses to a complex pathogen.


Arthritis Research & Therapy | 2014

Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis.

Matthew L. Stoll; Ranjit Kumar; Casey D. Morrow; Elliot J. Lefkowitz; Xiangqin Cui; Anna Genin; Randy Q. Cron; Charles O. Elson

IntroductionPrior studies have established altered microbiota and immunologic reactivity to enteric commensal organisms in inflammatory bowel disease (IBD). Since intestinal inflammation is present in a subset of patients with both pediatric and adult spondyloarthritis (SpA), we hypothesized that SpA patients may also have altered microbiota and immune responsiveness to enteric organisms.MethodsStool and blood specimens were collected from children with enthesitis-related arthritis (ERA) and non-inflammatory controls. DNA purified from stool was subject to PCR amplification and sequencing of the variable IV region from the 16S rDNA gene. IgA and IgG Enzyme-linked Immunosorbent Assays (ELISAs) were performed on select species of bacteria in most subjects.ResultsTwenty-five children with ERA and 13 controls were included. The ERA patients had less Faecalibacterium prausnitzii (3.8% versus 10%, P = 0.008) and lachnospiraceae family (12 versus 7.0%, P = 0.020), a statistically significant increase in bifidobacterium (1.8% versus 0%, P = 0.032) and a non-statistically significant increase in Bacteroides (21% versus 11%, P = 0.150). Akkermansia muciniphila was abundant (>2%) in 7/27 ERA patients but none of the controls (P = 0.072.) Cluster analysis revealed two clusters of ERA patients: Cluster one (n = 8) was characterized by high levels of Bacteroides genus, while a second (n = 15) cluster had similar levels as the controls. Seven of 17 (41%) of the ERA subjects in Cluster 2 compared to 0/8 of the subjects in Cluster 1 had abundant Akkermansia muciniphila (P = 0.057). Serum IgA and IgG antibody levels against F. prausnitzii and B. fragilis were similar between patients and controls, whereas the two groups showed divergent responses when the fecal relative abundances of F. prausnitzii and Bacteroides were compared individually against IgA antibody levels recognizing F. prausnitzii and B. fragilis, respectively.ConclusionThe abundance of F. prausnitzii in the stool among patients with ERA is reduced compared to controls, and Bacteroides and A. muciniphila are identified as associative agents in subsets of ERA patients. Differences in the humoral responses to these bacteria may contribute to disease.

Collaboration


Dive into the Elliot J. Lefkowitz's collaboration.

Top Co-Authors

Avatar

Casey D. Morrow

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ranjit Kumar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chunlin Wang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Travis Ptacek

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chris Upton

University of Victoria

View shared research outputs
Top Co-Authors

Avatar

Peter Eipers

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robert Curtis Hendrickson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Q. King

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Christina A. Muzny

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge