Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellis C. Gayles is active.

Publication


Featured researches published by Ellis C. Gayles.


International Journal of Obesity | 2005

Different forms of obesity as a function of diet composition

Jordan Dourmashkin; Guo-Qing Chang; Ellis C. Gayles; James O. Hill; Susan K. Fried; Julien C; Sarah F. Leibowitz

OBJECTIVE:To characterize the phenotype of obesity on a high-carbohydrate diet (HCD) as compared to a high-fat diet (HFD) or moderate-fat diet (MFD).METHODS AND PROCEDURES:In four experiments, adult Sprague–Dawley rats (275–300 g) were maintained for several weeks on a: (1) HFD with 50% fat; (2) balanced MFD with 25% fat; or (3) HCD with 10% fat/65% carbohydrate. Then, based on the amount of body fat accumulated in four dissected fat pads, the animals were subgrouped as lean (lowest tertile) or obese (highest tertile) and characterized with multiple measures.RESULTS:The obese rats of these diet groups, with 70–80% greater body fat than the lean animals, exhibited elevated levels of leptin and insulin and increased activity of lipoprotein lipase in adipose tissue (aLPL), with no change in muscle LPL. Characteristics common to the obese rats on the HFD or MFD, but not seen on the HCD, were hyperphagia, elevated circulating levels of triglycerides (TG), nonesterified fatty acids (NEFA) and glucose, and a significant increase in β-hydroxyacyl-CoA dehydrogenase (HADH) activity in muscle, reflecting its greater capacity to metabolize fat. This was accompanied by a significant increase in expression of the peptide, galanin (GAL), in the paraventricular nucleus (PVN), as measured by in situ hybridization and real-time quantitative PCR, and also in GAL peptide immunoreactivity. These measures of GAL were consistently, positively correlated with circulating TG levels and also with HADH activity in muscle. In contrast to these fat-associated changes, rats that became obese on an HCD maintained normal caloric intake and levels of TG, NEFA, and glucose. They also showed no change in PVN GAL mRNA or peptide. Instead, they exhibited a significant reduction in HADH activity compared to the lean animals, along with increased activity of phosphofructokinase in muscle, a key enzyme in glycolysis.CONCLUSION:Specific characteristics of obesity, including expression of hypothalamic peptides, are dependent upon diet composition. Whereas obesity on an HFD is associated with hyperphagia and elevated lipids, fat metabolism in muscle, and fat-stimulated peptides such as GAL, obesity on an HCD with a similar increase in body fat shows none of these characteristics and instead exhibits a metabolic pattern in muscle that favors carbohydrate over fat oxidation. These results suggest the existence of multiple forms of obesity with different underlying mechanisms that are diet dependent.


Brain Research | 2004

Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle

Sarah F. Leibowitz; Jordan Dourmashkin; Guo-Qing Chang; James O. Hill; Ellis C. Gayles; Susan K. Fried; Jian Wang

To compare the effects of acute exposure to dietary fat to those of chronic exposure, Sprague-Dawley rats were given a high-fat diet (50% fat) or moderate-fat diet (25% fat) for 1 day, 2 h or 3 weeks. With measurements of various parameters, the high-fat diet for 21 days produced the expected changes of: (1) a significant increase in total caloric intake and dissected fat pad weights; (2) a rise in leptin and the metabolites, triglycerides (TG), non-esterified fatty acids and glucose; (3) an increase in muscle beta-hydroxyacyl-CoA dehydrogenase (HADH) and adipose lipoprotein lipase (aLPL) activity, along with a decrease in LPL activity in muscle (mLPL); and (4) elevated galanin (GAL) expression and peptide levels in the anterior region of the paraventricular nucleus (PVN), with no change in the arcuate nucleus. The acute 1-day or 2-h high-fat diet similarly increased circulating lipids, HADH activity and PVN GAL mRNA but stimulated rather than suppressed mLPL activity. These effects occurred in the absence of a change in total caloric intake, fat pad weights, and adipose-related measures, suggesting that they resulted more from the rise in dietary fat from 25% to 50% than from increased adiposity or hyperphagia. Moreover, PVN GAL mRNA in the different groups was consistently and positively correlated with the specific measures of TG levels and both HADH and mLPL activity, linking it to metabolic processes related to the transport and capacity for oxidation of TG in muscle, rather than adipose tissue.


Physiology & Behavior | 2006

Model for predicting and phenotyping at normal weight the long-term propensity for obesity in Sprague-Dawley rats

Jordan Dourmashkin; Guo-Qing Chang; James O. Hill; Ellis C. Gayles; Susan K. Fried; Sarah F. Leibowitz

Tests were conducted to determine whether weight gain or nutrient intake measures during the first week of exposure to a macronutrient diet can accurately predict an animals long-term propensity towards obesity. In multiple groups of normal-weight Sprague-Dawley rats (n=35-70/group), daily weight gain during the first 5 days on a high-fat diet (45-60% fat) was found to be strongly, positively correlated (r=+0.71 to r=+0.82) with accumulated body fat in 4 dissected depots after 4-6 weeks on the diet. This measure consistently identified obesity-prone (OP) rats which, relative to the obesity-resistant (OR) rats, were only slightly heavier (+15 g, 4%) and hyperphagic (+9 kcal, 8%) after 5 days but markedly heavier (+70g) with up to 2-fold greater fat mass after several weeks on the diet. Other dietary conditions and measures revealed weaker relationships to ultimate body fat accrual. The OP rats identified by their 5-day weight-gain score exhibited at this early stage clear disturbances characteristic of markedly obese rats. These included elevated leptin, insulin, triglycerides and glucose, along with increased lipoprotein lipase activity (LPL) in adipose tissue and galanin expression in the paraventricular nucleus. Most notable were significant reductions in muscle of LPL activity and ratio of beta-hydroxyacyl-CoA dehydrogenase to citrate synthase activity, indicating a decline in lipid transport and capacity of muscle to metabolize lipids. By occurring early with initial weight gain, these hypothalamic and metabolic disturbances in OP rats, favoring fat storage in adipose tissue over fat oxidation in muscle, may have causal relationships to long-term accumulation of body fat.


Annals of the New York Academy of Sciences | 1997

Fat and energy balance.

Michael J. Pagliassotti; Ellis C. Gayles; James O. Hill

In summary, an imbalance between energy intake and energy expenditure can explain approximately 80% of the variance in body weight gain in this dietary model of obesity. Several metabolic variables appear to contribute to differences in energy balance. A high RQ and an inappropriate suppression of glucose production by insulin appear to be linked to the increase in energy intake that occurs when obesity-prone rats are provided with the high-fat diet. In addition, early tissue enzymatic differences in obesity-prone versus obesity-resistant rats may contribute to differences in energy expenditure and/or to differences in nutrient partitioning. In this dietary model, susceptibility to dietary obesity involves a metabolic environment that includes a high RQ and a reduced ability of insulin to suppress glucose appearance (FIG. 9). However, this environment does not lead to obesity nor to a measurable difference in body weight gain when the susceptible rats are eating a low-fat diet. The high-fat diet is a necessary catalyst for the observed variability in body weight gain and the development of obesity. As a catalyst, the high-fat diet results in an imbalance between energy intake and energy expenditure in some, but not all, rats. This imbalance interacts with the permissive metabolic environment (tissue enzymatic profile favoring carbohydrate utilization and lipid storage) to produce obesity on the high-fat diet. Later, in the HFD feeding period, the rate of weight gain is not significantly different between OP and OR rats, although net fat accumulation remains greater in the former group. It is interesting that this later period is characterized by a reduction in the difference in both RQ and energy intake between OP and OR rats. Thus, during the later stages of HFD feeding, the discrepancy in both energy balance and nutrient balance between OP and OR rats is reduced. This dietary model of obesity is relevant to human obesity. While the prevalence of obesity is high, the majority of people are not obese. The high prevalence of obesity may be due to environmental catalysts that interact with inherent behavioral and metabolic characteristics that favor nutrient retention. Resistance to obesity can be achieved by avoiding these environmental catalysts, by having inherent characteristics that prevent nutrient retention, or both. Our work suggests that the complete understanding of obesity will require not only the identification and functional significance of the genes that determine the inherent capacity of the behavioral and metabolic systems, but also the role of environmental catalysts in determining where and how these systems operate.


Peptides | 2005

PVN galanin increases fat storage and promotes obesity by causing muscle to utilize carbohydrate more than fat

R. Yun; Jordan Dourmashkin; James O. Hill; Ellis C. Gayles; Susan K. Fried; Sarah F. Leibowitz

To understand the function of the feeding-stimulatory peptide, galanin (GAL), in eating and body weight regulation, the present experiments tested the effects of both acute and chronic injections of this peptide into the paraventricular nucleus (PVN) of rats. With food absent during the test, acute injection of GAL (300 pmol/0.3 microl) significantly increased phosphofructokinase activity in muscle, suggesting enhanced capacity to metabolize carbohydrate, and reduced circulating glucose levels. It also decreased beta-hydroxyacyl-CoA dehydrogenase activity in muscle, indicating reduced fat oxidation, while increasing circulating non-esterified fatty acids (NEFA) and lipoprotein lipase activity in adipose tissue (aLPL). Chronic PVN injections of GAL (300 pmol/0.3 microl/injection) versus saline over 7-10 days significantly stimulated daily caloric intake and increased the weight of four dissected fat depots by 30-40%. These effects, accompanied by elevated levels of leptin, triglycerides, NEFA and aLPL activity, were evident only in rats on a diet with at least 35% fat. Thus, by favoring carbohydrate over fat metabolism in muscle and reversing hyperglycemia, PVN GAL may have a function in counteracting the metabolic disturbances induced by a high-fat diet. As a consequence of these actions, GAL can promote the partitioning of lipids away from oxidation in muscle towards storage in adipose tissue.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats

Deborah A. Podolin; Ellis C. Gayles; Yuren Wei; Jeffrey S. Thresher; Michael J. Pagliassotti

Although fish oil supplementation may prevent the onset of diet-induced insulin resistance in rats, it appears to worsen glycemic control in humans with existing insulin resistance. In the present study, the euglycemic, hyperinsulinemic (4× basal) clamp technique with [3-3H]glucose and 2-deoxy-[1-14C]glucose was used to directly compare the ability of fish oil to prevent and reverse sucrose-induced insulin resistance. In study 1 (prevention study), male Wistar rats were fed a purified high-starch diet (68% of total energy), high-sucrose diet (68% of total energy), or high-sucrose diet in which 6% of the fat content was replaced by menhaden oil for 5 wk. In study 2 (reversal study), animals were fed the high-starch or high-sucrose diets for 5 wk and then the sucrose animals were assigned to one of the following groups for an additional 5 wk: high starch, high sucrose, or high sucrose with 6% menhaden oil. Rats fed the high-starch diet for 10 wk served as controls. In study 3 (2nd reversal study), animals followed a similar diet protocol as in study 2; however, the reversal period was extended to 15 wk. In study 1, the presence of the fish oil in the high-sucrose diet prevented the development of insulin resistance. Glucose infusion rates (GIR, mg ⋅ kg-1 ⋅ min-1) were 17.0 ± 0.9 in starch, 10.6 ± 1.7 in sucrose, and 15.1 ± 1.5 in sucrose with fish oil animals. However, in study 2, this same diet was unable to reverse sucrose-induced insulin resistance (GIR, 16.7 ± 1.4 in starch, 7.1 ± 1.5 in sucrose, and 4.8 ± 0.9 in sucrose with fish oil animals). Sucrose-induced insulin resistance was reversed in rats that were switched back to the starch diet (GIR, 18.6 ± 3.0). Results from study 3 were similar to those observed in study 2. In summary, fish oil was effective in preventing diet-induced insulin resistance but not able to reverse it. A preexisting insulin-resistant environment interferes with the positive effects of menhaden oil on insulin action.


Endocrinology | 1998

Adipose tissue-derived tumor necrosis factor activity correlates with fat cell size but not insulin action in aging rats.

Catherine L. Morin; Ellis C. Gayles; Deborah A. Podolin; Yuren Wei; Meimei Xu; Michael J. Pagliassotti


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1997

Contribution of energy intake and tissue enzymatic profile to body weight gain in high-fat-fed rats.

Ellis C. Gayles; Michael J. Pagliassotti; P. A. Prach; T. A. Koppenhafer; James O. Hill


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2000

Developmental stage modifies diet-induced peripheral insulin resistance in rats

Michael J. Pagliassotti; Ellis C. Gayles; Deborah A. Podolin; Yuren Wei; Catherine L. Morin


Brain Research | 2005

Phenotypic profile of SWR/J and A/J mice compared to control strains: Possible mechanisms underlying resistance to obesity on a high-fat diet

Sarah F. Leibowitz; Jesline T. Alexander; Jordan Dourmashkin; James O. Hill; Ellis C. Gayles; Guo-Qing Chang

Collaboration


Dive into the Ellis C. Gayles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Podolin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Yuren Wei

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Rockefeller University

View shared research outputs
Researchain Logo
Decentralizing Knowledge