Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elon C. Roti is active.

Publication


Featured researches published by Elon C. Roti.


PLOS ONE | 2012

Acute Doxorubicin Insult in the Mouse Ovary Is Cell- and Follicle-Type Dependent

Elon C. Roti Roti; Scott K. Leisman; David H. Abbott; Sana M. Salih

Primary ovarian insufficiency (POI) is one of the many unintended consequences of chemotherapy faced by the growing number of female cancer survivors. While ovarian repercussions of chemotherapy have long been recognized, the acute insult phase and primary sites of damage are not well-studied, hampering efforts to design effective intervention therapies to protect the ovary. Utilizing doxorubicin (DXR) as a model chemotherapy agent, we defined the acute timeline for drug accumulation, induced DNA damage, and subsequent cellular and follicular demise in the mouse ovary. DXR accumulated first in the core ovarian stroma cells, then redistributed outwards into the cortex and follicles in a time-dependent manner, without further increase in total ovarian drug levels after four hours post-injection. Consistent with early drug accumulation and intimate interactions with the blood supply, stroma cell-enriched populations exhibited an earlier DNA damage response (measurable at 2 hours) than granulosa cells (measurable at 4 hours), as quantified by the comet assay. Granulosa cell-enriched populations were more sensitive however, responding with greater levels of DNA damage. The oocyte DNA damage response was delayed, and not measurable above background until 10–12 hours post-DXR injection. By 8 hours post-DXR injection and prior to the oocyte DNA damage response, the number of primary, secondary, and antral follicles exhibiting TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive granulosa cells plateaued, indicating late-stage apoptosis and suggesting damage to the oocytes is subsequent to somatic cell failure. Primordial follicles accumulate significant DXR by 4 hours post-injection, but do not exhibit TUNEL-positive granulosa cells until 48 hours post-injection, indicating delayed demise. Taken together, the data suggest effective intervention therapies designed to protect the ovary from chemotherapy accumulation and induced insult in the ovary must act almost immediately to prevent acute insult as significant damage was seen in stroma cells within the first two hours.


Biology of Reproduction | 2012

Dexrazoxane Ameliorates Doxorubicin-Induced Injury in Mouse Ovarian Cells

Elon C. Roti Roti; Sana M. Salih

ABSTRACT Doxorubicin (DXR) is a frontline chemotherapy agent implicated in unintended ovarian failure in female cancer survivors. The fertility preservation techniques currently available for cancer patients are often time and cost prohibitive and do not necessarily preserve endocrine function. There are no drug-based ovary protection therapies clinically available. This study provides the first investigation using dexrazoxane (Dexra) to limit DXR insult in ovarian tissue. In KK-15 granulosa cells, a 3-h DXR treatment increased double-strand (ds) DNA breaks 40%–50%, as quantified by the neutral comet assay, and dose-dependent cytotoxicity. Dexra exhibited low toxicity in KK-15 cells, inducing no DNA damage and less than 20% cell loss. Cotreating KK-15 cells with Dexra prevented acute DXR-induced dsDNA damage. Similarly, Dexra attenuated the DXR-induced 40%–65% increase in dsDNA breaks in primary murine granulosa cells and cells from in vitro cultured murine ovaries. DXR can cause DNA damage either through a topoisomerase II-mediated pathway, based on DXR intercalation into DNA, or through oxidative stress. Cotreating KK-15 cells with 2 μM Dexra was sufficient to prevent DXR-induced, but not H2O2-induced, DNA damage. These data indicated the protective effects are likely due to Dexras inhibition of topoisomerase II catalytic activity. This putative protective agent attenuated downstream cellular responses to DXR, preventing H2AFX activation in KK-15 cells and increasing viability as demonstrated by increasing the DXR lethal dose in KK-15 cells 5- to 8-fold (LD20) and primary murine granulosa cells 1.5- to 2-fold (LD50). These data demonstrate Dexra protects ovarian cells from DXR insult and suggest that it is a promising tool to limit DXR ovarian toxicity in vivo.


The Journal of General Physiology | 2011

hERG1a N-terminal eag domain–containing polypeptides regulate homomeric hERG1b and heteromeric hERG1a/hERG1b channels: A possible mechanism for long QT syndrome

Matthew C. Trudeau; Lisa M. Leung; Elon C. Roti Roti; Gail A. Robertson

Human ether-á-go-go–related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS domain–containing hERG1a NTRs (encoding amino acids 1–181, 1–228, 1–319, and 1–365). The NTRs were also predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac arrhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated heteromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the current–voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not measurably regulate hERG1a channels. A short NTR (encoding amino acids 1–135) composed primarily of the PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS.


PLOS ONE | 2014

Bortezomib prevents acute doxorubicin ovarian insult and follicle demise, improving the fertility window and pup birth weight in mice.

Elon C. Roti Roti; Ashley K. Ringelstetter; Jenna Kropp; David H. Abbott; Sana M. Salih

Increasing numbers of female patients survive cancer, but succumb to primary ovarian insufficiency after chemotherapy. We tested the hypothesis that Bortezomib (Bort) protects ovaries from doxorubicin (DXR) chemotherapy by treating female mice with Bort 1 hour prior to DXR. By preventing DXR accumulation in the ovary, Bort attenuated DXR-induced DNA damage in all ovarian cell types, subsequent γH2AFX phosphorylation, and resulting apoptosis in preantral follicles. Bort pretreatment extended the number of litters per mouse, improved litter size and increased pup weight following DXR treatment, thus increasing the duration of post-chemotherapy fertility and improving pup health. As a promising prophylactic ovoprotective agent, Bort does not interfere with cancer treatment, and is currently used as a chemotherapy adjuvant. Bort-based chemoprotection may preserve ovarian function in a non-invasive manner that avoids surgical ovarian preservation, thus diminishing the health complications of premature menopause following cancer treatment.


Biology of Reproduction | 2015

Dexrazoxane Abrogates Acute Doxorubicin Toxicity in Marmoset Ovary

Sana M. Salih; Ashley K. Ringelstetter; Mazin Z. Elsarrag; David H. Abbott; Elon C. Roti Roti

ABSTRACT Preservation of ovarian function following chemotherapy for nonovarian cancers is a formidable challenge. For prepubescent girls, the only option to prevent chemotherapy damage to the ovary is ovarian tissue cryopreservation, an experimental procedure requiring invasive surgeries to harvest and reimplant tissue, which carries the risk of cancer reintroduction. Drugs that block the primary mechanism of chemotherapy insult, such as dexrazoxane (Dexra) in the context of anthracycline chemotherapy, provide a novel approach for ovarian protection and have the potential to overcome current limitations to oncofertility treatment. Dexra is a catalytic topoisomerase 2 inhibitor that protects the mouse ovary from acute doxorubicin (DXR) chemotherapy toxicity in vitro by preventing DXR-induced DNA damage and subsequent gammaH2AX activation. To translate acute DXR ovarian insult and Dexra protection from mouse to nonhuman primate, freshly obtained marmoset ovarian tissue was cultured in vitro and treated with vehicle or 20 μM Dexra 1 h prior to 50 nM DXR. Cultured ovarian tissue was harvested at 2, 4, or 24 h post-DXR treatment. Dexra prevented DXR-induced DNA double-strand breaks as quantified by the neutral comet assay. DXR treatment for 24 h increased gammaH2AX phosphorylation, specifically increasing the number of foci-positive granulosa cells in antral follicles, while Dexra pretreatment inhibited DXR-induced gammaH2AX phosphorylation foci formation. Additionally, Dexra pretreatment trended toward attenuating DXR-induced AKT1 phosphorylation and caspase-9 activation as assayed by Western blots of ovarian tissue lysates. The combined findings suggest Dexra prevents primary DXR-induced DNA damage, the subsequent cellular response to DNA damage, and may diminish early apoptotic signaling in marmoset ovarian tissue. This study provides initial translation of Dexra protection against acute ovarian DXR toxicity from mice to marmoset monkey tissue.


PLOS ONE | 2015

Dexrazoxane Diminishes Doxorubicin-Induced Acute Ovarian Damage and Preserves Ovarian Function and Fecundity in Mice.

Jenna Kropp; Elon C. Roti Roti; Ashley K. Ringelstetter; Hasan Khatib; David H. Abbott; Sana M. Salih

Advances in cancer treatment utilizing multiple chemotherapies have dramatically increased cancer survivorship. Female cancer survivors treated with doxorubicin (DXR) chemotherapy often suffer from an acute impairment of ovarian function, which can persist as long-term, permanent ovarian insufficiency. Dexrazoxane (Dexra) pretreatment reduces DXR-induced insult in the heart, and protects in vitro cultured murine and non-human primate ovaries, demonstrating a drug-based shield to prevent DXR insult. The present study tested the ability of Dexra pretreatment to mitigate acute DXR chemotherapy ovarian toxicity in mice through the first 24 hours post-treatment, and improve subsequent long-term fertility throughout the reproductive lifespan. Adolescent CD-1 mice were treated with Dexra 1 hour prior to DXR treatment in a 1:1 mg or 10:1 mg Dexra:DXR ratio. During the acute injury period (2–24 hours post-injection), Dexra pretreatment at a 1:1 mg ratio decreased the extent of double strand DNA breaks, diminished γH2FAX activation, and reduced subsequent follicular cellular demise caused by DXR. In fertility and fecundity studies, dams pretreated with either Dexra:DXR dose ratio exhibited litter sizes larger than DXR-treated dams, and mice treated with a 1:1 mg Dexra:DXR ratio delivered pups with birth weights greater than DXR-treated females. While DXR significantly increased the “infertility index” (quantifying the percentage of dams failing to achieve pregnancy) through 6 gestations following treatment, Dexra pretreatment significantly reduced the infertility index following DXR treatment, improving fecundity. Low dose Dexra not only protected the ovaries, but also bestowed a considerable survival advantage following exposure to DXR chemotherapy. Mouse survivorship increased from 25% post-DXR treatment to over 80% with Dexra pretreatment. These data demonstrate that Dexra provides acute ovarian protection from DXR toxicity, improving reproductive health in a mouse model, suggesting this clinically available drug may provide ovarian protection for cancer patients.


PLOS ONE | 2014

Cholesterol Selectively Regulates IL-5 Induced Mitogen Activated Protein Kinase Signaling in Human Eosinophils

Mandy E. Burnham; Stephane Esnault; Elon C. Roti Roti; Mary Ellen Bates; Paul J. Bertics; Loren C. Denlinger

Eosinophils function contributes to human allergic and autoimmune diseases, many of which currently lack curative treatment. Development of more effective treatments for eosinophil-related diseases requires expanded understanding of eosinophil signaling and biology. Cell signaling requires integration of extracellular signals with intracellular responses, and is organized in part by cholesterol rich membrane microdomains (CRMMs), commonly referred to as lipid rafts. Formation of these organizational membrane domains is in turn dependent upon the amount of available cholesterol, which can fluctuate widely with a variety of disease states. We tested the hypothesis that manipulating membrane cholesterol content in primary human peripheral blood eosinophils (PBEos) would selectively alter signaling pathways that depend upon membrane-anchored signaling proteins localized within CRMMs (e.g., mitogen activated protein kinase [MAPK] pathway), while not affecting pathways that signal through soluble proteins, like the Janus Kinase/Signal Transducer and Activator of Transcription [JAK/STAT] pathway. Cholesterol levels were increased or decreased utilizing cholesterol-chelating methyl-β-cyclodextrin (MβCD), which can either extract membrane cholesterol or add exogenous membrane cholesterol depending on whether MβCD is preloaded with cholesterol. Human PBEos were pretreated with MβCD (cholesterol removal) or MβCD+Cholesterol (MβCD+Chol; cholesterol delivery); subsequent IL-5-stimulated signaling and physiological endpoints were assessed. MβCD reduced membrane cholesterol in PBEos, and attenuated an IL-5-stimulated p38 and extracellular-regulated kinase 1/2 phosphorylation (p-p38, p-ERK1/2), and an IL-5-dependent increase in interleukin-1β (IL-1β) mRNA levels. In contrast, MβCD+Chol treatment elevated PBEos membrane cholesterol levels and basal p-p38, but did not alter IL-5-stimulated phosphorylation of ERK1/2, STAT5, or STAT3. Furthermore, MβCD+Chol pretreatment attenuated an IL-5-induced increase in cell survival at 48 hours, measured as total cellular metabolism. The reduction in cell survival following cholesterol addition despite unaltered STAT phosphorylation contradicts the current dogma in which JAK/STAT activation is sufficient to promote eosinophil survival, and suggests an additional, unidentified mechanism critically regulates IL-5-mediated human PBEos survival.


Journal of Cell Science | 2018

Localization and functional consequences of a direct interaction between TRIOBP-1 and hERG proteins in the heart

David K. Jones; Ashley C. Johnson; Elon C. Roti Roti; Fang Liu; Rebecca Uelmen; Rebecca A. Ayers; István Baczkó; David J. Tester; Michael J. Ackerman; Matthew C. Trudeau; Gail A. Robertson

ABSTRACT Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability. Summary: TRIOBP-1 and the hERG ion channel protein directly interact and colocalize in cardiomyocytes. TRIOBP-1 overexpression affects channel distribution, IKr magnitude and the morphology of the action potential.


Expert Review of Quality of Life in Cancer Care | 2016

The possibility of dexrazoxane to prevent ovarian damage caused by toxicity

Jenna Kropp; David H. Abbott; Elon C. Roti Roti

ABSTRACT Dexrazoxane (Dexra), a catalytic topoisomerase II inhibitor and strong chelator, has been safely used in the clinic to decrease cardiotoxicity and extravasation caused by the anthracycline class of chemotherapy agents. Dexra also effectively shields the ovary from doxorubicin (DXR) chemotherapy at a dose 10-fold lower than that clinically approved for cardioprotection, ameliorating concerns that this chemoprotectant may diminish anti-tumor efficacy or increase risk for secondary malignancies. Dexra prevents acute DNA damage caused by DXR in the ovary, prolongs the reproductive lifespan of the adult female mouse post-chemotherapy, and improves offspring health. Cross-application of clinically-approved Dexra pretreatment demonstrates timely drug-based ovoprotection can be clinically implemented to improve quality of life post-cancer.


Cancer Treatment and the Ovary#R##N#Clinical and Laboratory Analysis of Ovarian Toxicity | 2015

In Vivo Models of Ovarian Toxicity

Elon C. Roti Roti; Sana M. Salih; Mary B. Zelinski

The success of cancer treatment results in female survivors who wrestle with long-term reproductive side effects of chemotherapy. An ideal ovoprotective drug would be mechanism-based, requiring increased knowledge of the action of chemotherapy drugs on the ovary. The strengths and weaknesses of relevant animal models in researching the mechanism of chemotherapy ovarian toxicity and developing ovoprotective therapies are discussed. Emerging in vivo rodent studies reveal that chemotherapeutic agents target multiple ovarian cell types. Most in vivo data assess either acute or long-term ovoprotection from a single chemotherapeutic agent, but direct cross-study efficacy comparisons are difficult due to disparate animal ages and endpoints. Nonetheless, in vivo proof-of-concept studies of some promising ovoprotectants in mice have led to normal offspring. Non-human primate models are necessary to evaluate chemotherapy-induced ovarian toxicity in vivo if the development of ovoprotective agents is to become a clinical reality. Future research on ovarian chemoprotection and design of novel chemotherapeutic agents that are not ovotoxic will transform clinical oncofertility practices for female cancer patients.

Collaboration


Dive into the Elon C. Roti's collaboration.

Top Co-Authors

Avatar

Gail A. Robertson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sana M. Salih

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David H. Abbott

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ashley K. Ringelstetter

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jenna Kropp

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Ayers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Samantha A. Delfosse

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Craig T. January

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge