Jenna Kropp
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenna Kropp.
Frontiers in Genetics | 2013
Xianyong Lan; Evan C. Cretney; Jenna Kropp; Karam Khateeb; Mary A. Berg; Francisco Peñagaricano; Ronald R. Magness; A. E. Radunz; Hasan Khatib
Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.
Frontiers in Genetics | 2014
Jenna Kropp; Sana M. Salih; Hasan Khatib
MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy.
PLOS ONE | 2013
Francisco Peñagaricano; Alex H. Souza; Paulo de Tarso Camillo de Carvalho; Ashley M. Driver; Rocio Gambra; Jenna Kropp; Katherine S. Hackbart; Daniel Luchini; R.D. Shaver; M.C. Wiltbank; Hasan Khatib
Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. Remarkably, a subtle difference in methionine supplementation in maternal diet was sufficient to cause significant changes in the transcriptome of the embryos. A total of 276 genes out of 10,662 showed differential expression between treatments (FDR <0.10). Interestingly, several of the most significant genes are related to embryonic development (e.g., VIM, IFI6, BCL2A1, and TBX15) and immune response (e.g., NKG7, TYROBP, SLAMF7, LCP1, and BLA-DQB). Likewise, gene set enrichment analysis revealed that several Gene Ontology terms, InterPro entries, and KEGG pathways were enriched (FDR <0.05) with differentially expressed genes involved in embryo development and immune system. The expression of most genes was decreased by maternal methionine supplementation, consistent with reduced transcription of genes with increased methylation of specific genes by increased methionine. Overall, our findings provide evidence that supplementing methionine to dams prior to conception and during the preimplantation period can modulate gene expression in bovine blastocysts. The ramifications of the observed gene expression changes for subsequent development of the pregnancy and physiology of the offspring warrant further investigation in future studies.
Journal of Dairy Science | 2015
Jenna Kropp; Hasan Khatib
Dairy cattle fertility has declined over time due to factors including reduced fertilization and early embryonic loss. To counter fertility problems and better study preimplantation embryonic development, in vitro production systems have been developed. These systems largely assess embryos based on their morphology, which is not a strong indicator of developmental potential. Currently, no biomarkers can be used to noninvasively survey an embryos potential in terms of its development and ability to establish a pregnancy. Thus, the objective of this study was to characterize and identify microRNA (miRNA) in culture media of embryos of differing developmental competence for future development as noninvasive biomarkers of embryo quality. The MiRNA sequencing of media conditioned by blastocyst and degenerate (those that failed to develop from the morula to blastocyst stage) embryos, revealed 11 differentially expressed miRNA; all were higher in concentration in degenerate conditioned media. Differential expression of mature microRNA (miR)-24, miR-191, and miR-148a was further validated using quantitative real-time PCR. Functional analysis of miR-24 revealed that addition of a mimic miRNA to culture media of morulae embryos resulted in a 27.3% decrease in development to the blastocyst stage. Furthermore, expression of miR-24 was 44.29-fold higher in blastocysts cultured with a miR-24 mimic compared with control blastocysts. Interestingly, the expression of CDKN1b, a target gene of miR-24 was repressed in embryos grown in the presence of the miRNA mimic. Mimic supplementation experiments suggest that miRNA are taken up by the embryo and that extracellular miRNA affect embryonic development. Overall, identification of a rich extracellular milieu in conditioned media sets the framework for future studies to determine the long-term predictive ability of embryo-based miRNA biomarkers on pregnancy outcome.
BMC Genomics | 2017
Jenna Kropp; J. A. Carrillo; Hadjer Namous; Alyssa Daniels; Sana M. Salih; Jiuzhou Song; Hasan Khatib
BackgroundInfertility in dairy cattle is a concern where reduced fertilization rates and high embryonic loss are contributing factors. Studies of the paternal contribution to reproductive performance are limited. However, recent discoveries have shown that, in addition to DNA, sperm delivers transcription factors and epigenetic components that are required for fertilization and proper embryonic development. Hence, characterization of the paternal contribution at the time of fertilization is warranted. We hypothesized that sire fertility is associated with differences in DNA methylation patterns in sperm and that the embryonic transcriptomic profiles are influenced by the fertility status of the bull. Embryos were generated in vitro by fertilization with either a high or low fertility Holstein bull. Blastocysts derived from each high and low fertility bulls were evaluated for morphology, development, and transcriptomic analysis using RNA-Sequencing. Additionally, DNA methylation signatures of sperm from high and low fertility sires were characterized by performing whole-genome DNA methylation binding domain sequencing.ResultsEmbryo morphology and developmental capacity did not differ between embryos generated from either a high or low fertility bull. However, RNA-Sequencing revealed 98 genes to be differentially expressed at a false discovery rate < 1%. A total of 65 genes were upregulated in high fertility bull derived embryos, and 33 genes were upregulated in low fertility derived embryos. Expression of the genes CYCS, EEA1, SLC16A7, MEPCE, and TFB2M was validated in three new pairs of biological replicates of embryos. The role of the differentially expressed gene TFB2M in embryonic development was further assessed through expression knockdown at the zygotic stage, which resulted in decreased development to the blastocyst stage. Assessment of the epigenetic signature of spermatozoa between high and low fertility bulls revealed 76 differentially methylated regions.ConclusionsDespite similar morphology and development to the blastocyst stage, preimplantation embryos derived from high and low fertility bulls displayed significant transcriptomic differences. The relationship between the paternal contribution and the embryonic transcriptome is unclear, although differences in methylated regions were identified which could influence the reprogramming of the early embryo. Further characterization of paternal factors delivered to the oocyte could lead to the identification of biomarkers for better selection of sires to improve reproductive efficiency.
PLOS ONE | 2013
Ashley M. Driver; Wen Huang; Jenna Kropp; Francisco Peñagaricano; Hasan Khatib
Imprinted genes have been implicated in early embryonic, placental, and neonatal development and alterations in expression levels of these genes can lead to growth abnormalities and embryonic lethality. However, little is known about the functions of bovine imprinted genes during the pre-implantation period. Therefore, the objective of this study was to assess the influence of altered expression of imprinted genes on developmental progress of embryos using small interfering RNA (siRNA). Expression levels of 18 imprinted genes (MAGEL2, UBE3A, IGF2R, NAP1L5, TSSC4, PEG3, NDN, CDKN1C, PHLDA2, MKRN3, USP29, NNAT, PEG10, RTL1, IGF2, H19, MIM1, and XIST) were compared between embryos reaching the blastocyst stage and growth-arrested embryos (degenerates) using quantitative real-time PCR (qRT-PCR). Ten genes were found to be differentially expressed between blastocysts and degenerates. The CDKN1C gene showed the highest upregulation in blastocysts whereas PHLDA2 was highly expressed in degenerates. To assess whether the observed differential gene expression was causative or resultant of embryo degeneration, these genes were selected for functional analysis using siRNA. Injection of siRNA specific to PHLDA2 into one-cell zygotes resulted in a substantial increase in blastocyst development, whereas injection of CDKN1C-specific siRNA resulted in a 45% reduction (P = 0.0006) in blastocyst development. RNA-Seq analysis of CDKN1C-siRNA-injected vs. non-injected embryos revealed 51 differentially expressed genes with functions in apoptosis, lipid metabolism, differentiation, and cell cycle regulation. Gene ontology analysis revealed nine pathways related to cell signaling, metabolism, and nucleic acid processing. Overall, our results show that proper expression levels of the imprinted genes CDKN1C and PHLDA2 are critical for embryo development, which suggests that these genes can be used as markers for normal blastocyst formation.
Journal of Dairy Science | 2013
R. Gambra; Francisco Peñagaricano; Jenna Kropp; Karam Khateeb; K.A. Weigel; J.A. Lucey; Hasan Khatib
The objective of this study was to characterize the genetic architecture underlying the absolute concentrations of 2 important milk proteins, κ-casein (κ-CN) and β-lactoglobulin (β-LG), in a backcross population of (Holstein × Jersey) × Holstein cattle. A genome-wide association analysis was performed using a selective DNA pooling strategy and the Illumina BovineHD BeadChip assay [777,000 (777K) SNP markers; Illumina Inc., San Diego, CA]. After correction for multiple testing, 25 single nucleotide polymorphisms were found to be associated with κ-CN and 36 single nucleotide polymorphisms were associated with β-LG. A pathway association analysis revealed 15 Gene Ontology (GO) terms associated with the κ-CN trait and 28 GO terms associated with β-LG. In addition, several GO terms were associated with both milk proteins. Further analysis revealed that κ-CN and β-LG production is regulated by both kinase and phosphatase activity, including mechanisms regulating the extracellular matrix. These results are in concordance with the complex multihormonal process controlling the expression of milk proteins and interactions between mammary epithelial cells and extracellular matrix components. Although κ-CN and β-LG milk proteins are expressed by single genes, the results from this study showed that many loci are involved in the regulation of the concentration of these 2 proteins.
PLOS ONE | 2014
Elon C. Roti Roti; Ashley K. Ringelstetter; Jenna Kropp; David H. Abbott; Sana M. Salih
Increasing numbers of female patients survive cancer, but succumb to primary ovarian insufficiency after chemotherapy. We tested the hypothesis that Bortezomib (Bort) protects ovaries from doxorubicin (DXR) chemotherapy by treating female mice with Bort 1 hour prior to DXR. By preventing DXR accumulation in the ovary, Bort attenuated DXR-induced DNA damage in all ovarian cell types, subsequent γH2AFX phosphorylation, and resulting apoptosis in preantral follicles. Bort pretreatment extended the number of litters per mouse, improved litter size and increased pup weight following DXR treatment, thus increasing the duration of post-chemotherapy fertility and improving pup health. As a promising prophylactic ovoprotective agent, Bort does not interfere with cancer treatment, and is currently used as a chemotherapy adjuvant. Bort-based chemoprotection may preserve ovarian function in a non-invasive manner that avoids surgical ovarian preservation, thus diminishing the health complications of premature menopause following cancer treatment.
Journal of Dairy Science | 2014
Jenna Kropp; Francisco Peñagaricano; Sana M. Salih; Hasan Khatib
In recent years, it has become evident that genetic selection to improve milk production has resulted in a decline in dairy cattle fertility. Growing evidence suggests that the greatest loss occurs early in pregnancy around the time of embryo implantation. As a means to make genetic improvements and to assist in reproductive performance, use of artificial reproductive technologies such as artificial insemination and in vitro production of embryos have been widely used. Both of these technologies rely on the competence and quality of gametes for successful development of embryos. Often, selection of animals is based on the genetic merit of the animal, although specific fertility markers are relatively underdeveloped compared with markers for production traits. Similarly, current in vitro fertilization systems could benefit from a uniform method for selection of the best quality embryos to transfer into recipients for successful implantation and delivery of healthy offspring. As genetics underlie biological processes such as fertility, the need exists to further identify and characterize genes that affect fertility and development within both the parental gametes and the embryo. Furthermore, the magnitude of the contribution of each parental genome to the success of embryo development and pregnancy is not clear. As such, the objective of this review is to provide an overview of studies relating to genetic markers at the DNA level, parental and embryonic gene expression, and the effects of epigenetics on embryonic development. Future studies should exploit advances in molecular technologies to identify and classify genes underlying fertility and development to establish biomarkers and predictors for improved genetic selection.
PLOS ONE | 2015
Jenna Kropp; Elon C. Roti Roti; Ashley K. Ringelstetter; Hasan Khatib; David H. Abbott; Sana M. Salih
Advances in cancer treatment utilizing multiple chemotherapies have dramatically increased cancer survivorship. Female cancer survivors treated with doxorubicin (DXR) chemotherapy often suffer from an acute impairment of ovarian function, which can persist as long-term, permanent ovarian insufficiency. Dexrazoxane (Dexra) pretreatment reduces DXR-induced insult in the heart, and protects in vitro cultured murine and non-human primate ovaries, demonstrating a drug-based shield to prevent DXR insult. The present study tested the ability of Dexra pretreatment to mitigate acute DXR chemotherapy ovarian toxicity in mice through the first 24 hours post-treatment, and improve subsequent long-term fertility throughout the reproductive lifespan. Adolescent CD-1 mice were treated with Dexra 1 hour prior to DXR treatment in a 1:1 mg or 10:1 mg Dexra:DXR ratio. During the acute injury period (2–24 hours post-injection), Dexra pretreatment at a 1:1 mg ratio decreased the extent of double strand DNA breaks, diminished γH2FAX activation, and reduced subsequent follicular cellular demise caused by DXR. In fertility and fecundity studies, dams pretreated with either Dexra:DXR dose ratio exhibited litter sizes larger than DXR-treated dams, and mice treated with a 1:1 mg Dexra:DXR ratio delivered pups with birth weights greater than DXR-treated females. While DXR significantly increased the “infertility index” (quantifying the percentage of dams failing to achieve pregnancy) through 6 gestations following treatment, Dexra pretreatment significantly reduced the infertility index following DXR treatment, improving fecundity. Low dose Dexra not only protected the ovaries, but also bestowed a considerable survival advantage following exposure to DXR chemotherapy. Mouse survivorship increased from 25% post-DXR treatment to over 80% with Dexra pretreatment. These data demonstrate that Dexra provides acute ovarian protection from DXR toxicity, improving reproductive health in a mouse model, suggesting this clinically available drug may provide ovarian protection for cancer patients.