Elsa Nunes
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elsa Nunes.
British Journal of Pharmacology | 2011
Cristina Sena; Paulo Matafome; Teresa Louro; Elsa Nunes; Rosa Fernandes; Raquel Seiça
The effects of metformin, an antidiabetic agent that improves insulin sensitivity, on endothelial function have not been fully elucidated. This study was designed to assess the effect of metformin on impaired endothelial function, oxidative stress, inflammation and advanced glycation end products formation in type 2 diabetes mellitus.
British Journal of Pharmacology | 2009
Cristina Sena; Elsa Nunes; Teresa Louro; T Proença; Rosa Fernandes; Michael R. Boarder; Raquel Seiça
This study was conducted to investigate the effects of α‐lipoic acid (α‐LA) on endothelial function in diabetic and high‐fat fed animal models and elucidate the potential mechanism underlying the benefits of α‐LA.
Experimental Neurology | 2005
Paula I. Moreira; Maria S. Santos; Cristina Sena; Elsa Nunes; Raquel Seiça; Catarina R. Oliveira
Using brain mitochondria isolated from 20-month-old diabetic Goto-Kakizaki rats, we evaluated the efficacy of CoQ10 treatment against mitochondrial dysfunction induced by Abeta1-40. For that purpose, several mitochondrial parameters were evaluated: respiratory indexes (RCR and ADP/O ratio), transmembrane potential (DeltaPsim), repolarization lag phase, repolarization and ATP levels and the capacity of mitochondria to produce hydrogen peroxide. We observed that 4 microM Abeta1-40 induced a significant decrease in the RCR and ATP content and a significant increase in hydrogen peroxide production. CoQ10 treatment attenuated the decrease in oxidative phosphorylation efficiency and avoided the increase in hydrogen peroxide production induced by the neurotoxic peptide. These results indicate that CoQ10 treatment counteracts brain mitochondrial alterations induced by Abeta1-40 suggesting that CoQ10 therapy can help to avoid a drastic energy deficiency that characterizes diabetes and Alzheimers disease pathophysiology.
Medicinal Chemistry | 2008
Sónia C. Correia; Cristina Carvalho; Maria S. Santos; Teresa Proença; Elsa Nunes; Ana I. Duarte; Pedro Monteiro; Raquel Seiça; Catarina R. Oliveira; Paula I. Moreira
We aimed to investigate whether metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. This study analyzed the effect of metformin on oxidative stress markers (thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA) and carbonyl groups), hydrogen peroxide (H(2)O(2)) levels, non-enzymatic antioxidant defenses [reduced (GSH) and oxidized (GSSG) glutathione and vitamin E] and enzymatic antioxidant defenses [glutathione peroxidase (GPx), glutathione reductase (GRed) and manganese superoxide dismutase (MnSOD)] in brain homogenates of diabetic GK rats, a model of type 2 diabetes. For this purpose we compared brain homogenates obtained from untreated GK rats versus GK rats treated with metformin during a period of 4 weeks. Brain homogenates obtained from Wistar rats were used as control. The MDA levels, GPx and GRed activities are significantly higher in untreated GK rats, while TBARS levels, carbonyl groups, glutathione content and vitamin E levels remain statistically unchanged when compared with control rats. In contrast, MnSOD activity and the levels of H(2)O(2) are significantly decreased in untreated GK rats when compared with control animals. However, metformin treatment normalized the majority of the parameters altered by diabetes. We observed that metformin, besides its antihyperglycemic action, induces a significant decrease in TBARS and MDA levels, GPx and GRed activities and a significant increase in GSH levels and MnSOD activity. These results indicate that metformin protects against diabetes-associated oxidative stress suggesting that metformin could be an effective neuroprotective agent.
Nutrition Research | 2008
Cristina Sena; Elsa Nunes; Aline Gomes; Maria S. Santos; Teresa Proença; Maria I. Martins; Raquel Seiça
The importance of nutritional supplementation in diabetes remains an unresolved issue. The present study was undertaken to examine the effects of alpha-tocopherol and CoQ(10), powerful antioxidants, on metabolic control and on the pancreatic mitochondria of GK rats, a model of type 2 diabetes. We also evaluated the efficacy of these nutrients in preventing the diabetic pancreatic lesions observed in GK rats. Rats were divided into 4 groups, a control group of diabetic GK rats and 3 groups of GK rats administered with alpha-tocopherol and CoQ(10) alone or both in association, during 8 weeks. Fasting blood glucose levels were not significantly different between the groups, nor were blood glucose levels at 2 hours after a glucose load. HbA1c level was significantly reduced in the group supplemented with both antioxidants. Diabetes induced a decrease in coenzyme Q plasma levels that prevailed after treatment with antioxidants. In addition, the plasma alpha-tocopherol levels were higher after treatment with the antioxidants. An increment in some components of the antioxidant defense system was observed in pancreatic mitochondria of treated GK rats. Moreover, the antioxidants tested either alone or in association failed to prevent the pancreatic lesions in this animal model of type 2 diabetes. In conclusion, our results indicate that CoQ(10) and alpha-tocopherol decrease glycated HbA1c and pancreatic lipid peroxidation. These antioxidants increase some components of the antioxidant defense system but do not prevent pancreatic lesions. Thus, we cannot rule out the potential benefit of antioxidant treatments in type 2 diabetes in the prevention of their complications.
Diabetes-metabolism Research and Reviews | 2011
Paulo Matafome; Teresa Louro; Lisa Rodrigues; Joana Crisóstomo; Elsa Nunes; C. Amaral; Pedro Monteiro; A. Cipriano; Raquel Seiça
Non‐alcoholic fatty liver disease (NAFLD) and type 2 diabetes are associated with dyslipidaemia, inflammation and oxidative stress. However, the pathophysiology of NAFLD in type 2 diabetes with hyperlipidaemia is not fully known, as well as the utility of the commonly prescribed anti‐diabetic and lipid‐lowering drugs in ameliorating liver injury markers.
The Journal of Steroid Biochemistry and Molecular Biology | 2011
Paula I. Moreira; José B.A. Custódio; Elsa Nunes; Paulo J. Oliveira; António J. Moreno; Raquel Seiça; Catarina R. Oliveira; Maria S. Santos
This study was aimed to analyse and compare the bioenergetics and oxidative status of mitochondria isolated from liver, heart and brain of ovariectomized rat females treated with 17β-estradiol (E2) and/or tamoxifen (TAM). E2 and/or TAM did not alter significantly the respiratory chain of the three types of mitochondria. However, TAM significantly decreased the phosphorylation efficiency of liver mitochondria while E2 significantly decreased the phosphorylation efficiency of heart mitochondria. E2 also significantly decreased the capacity of heart and liver mitochondria to accumulate Ca(2+) this effect being attenuated in liver mitochondria isolated from E2+TAM-treated rat females. TAM treatment increased the ratio of glutathione to glutathione disulfide (GSH/GSSG) of liver mitochondria. Brain mitochondria from TAM- and E2+TAM-treated females showed a significantly lower GSH/GSSG ratio. However, heart mitochondria from TAM- and E2+TAM-treated females presented a significant decrease in GSSG and an increase in GSH/GSSG ratio. Thiobarbituric acid reactive substances levels were significantly decreased in liver mitochondria isolated from E2+TAM-treated females. Finally, E2 and/or TAM treatment significantly decreased the levels of hydrogen peroxide produced by brain mitochondria energized with glutamate/malate. These results indicate that E2 and/or TAM have tissue-specific effects suggesting that TAM and hormonal replacement therapies may have some side effects that should be carefully considered.
European Journal of Pharmacology | 2011
Teresa Louro; Paulo Matafome; Elsa Nunes; Fernanda Xavier da Cunha; Raquel Seiça
Type 2 diabetes is increasing at epidemic proportions throughout the world, and diabetic nephropathy is the principal cause of end stage renal failure. Approximately 40% of patients with type 2 diabetes may progress to nephropathy and a good metabolic control can prevent the development of diabetic renal injury. The aim of our study was to evaluate, in young type 2 diabetic Goto-Kakizaki (GK) rats fed with atherogenic diet, the effects of the anti-diabetic compounds insulin, metformin and gliclazide on renal damage. GK rats fed with atherogenic diet showed increased body weight and fasting blood glucose, total cholesterol, triglycerides, C-reactive protein and protein carbonyl levels and lower HDL-cholesterol concentration; renal markers of inflammation and fibrosis were also elevated. All the anti-diabetic agents ameliorated fasting glycaemia and insulin resistance but only insulin and metformin were able to improve glycoxidation, fibrosis and inflammation kidney parameters. Our data suggest that insulin and metformin treatments, improving glicoxidative, inflammatory and fibrotic renal damage markers, play a key role in the prevention of diabetic nephropathy.
Acta Diabetologica | 2007
Elsa Nunes; Francisco Peixoto; Teresa Louro; Cristina Sena; Maria S. Santos; Paulo Matafome; Paula I. Moreira; Raquel Seiça
We investigated the effect of sub-chronic soybean oil (SO) treatment on the insulin secretion and fatty acid composition of islets of Langerhans obtained from Goto-Kakizaki (GK), a model of type 2 diabetes, and normal Wistar rats. We observed that soybean-treated Wistar rats present insulin resistance and defective islet insulin secretion when compared with untreated Wistar rats. The decrease in insulin secretion occurred at all concentrations of glucose and arginine tested. Furthermore we observed that soybean-treated normal islets present a significant decrease in two saturated fatty acids, myristic and heneicosanoic acids, and one monounsaturated eicosenoic acid, and the appearance of the monounsaturated erucic acid. Concerning diabetic animals, we observed that soybean-treated diabetic rats, when compared with untreated GK rats, present an increase in plasma non-fasting free fatty acids, an exacerbation of islet insulin secretion impairment in all conditions tested and a significant decrease in the monounsaturated palmitoleic acid. Altogether our results show that SO treatment results in a decrease of insulin secretion and alterations on fatty acid composition in normal and diabetic islets. Furthermore, the impairment of insulin secretion, islet erucic acid and fasting plasma insulin levels are similar in treated normal and untreated diabetic rats, suggesting that SO could have a deleterious effect on β-cell function and insulin sensitivity.
Naunyn-schmiedebergs Archives of Pharmacology | 2009
Paulo Matafome; Elsa Nunes; Teresa Louro; C. Amaral; Joana Crisóstomo; Lisa Rodrigues; A.R. Moedas; Pedro Monteiro; A. Cipriano; Raquel Seiça
Non-alcoholic fatty liver disease (NAFLD) is a major complication linked with the metabolic syndrome associated with dyslipidemia, inflammation, and oxidative stress. Impact of type 2 diabetes with hyperlipidemia in NAFLD has to be established, as well as the utility of commonly prescribed anti-diabetic and lipid-lowering agents in improving liver injury markers. Genetic type 2 diabetic Goto–Kakizaki rats were fed with a high-fat diet to test hepatic effects of type 2 diabetes with hyperlipidemia and the effect of atorvastatin and insulin, individually and in combination, in systemic and hepatic inflammatory and oxidative stress markers. High-fat diet aggravated fasting glycemia, systemic and liver lipids, and inflammatory and oxidative stress markers. Individual treatments improved glycemic and lipid profiles, but failed to improve inflammatory markers, whereas insulin was able to reduce liver oxidative stress parameters. Combination of insulin and atorvastatin further improved glycemic and lipid profiles and decreased circulating C-reactive protein levels and liver inflammatory and oxidative stress markers. Insulin and atorvastatin combination leads to better glycaemic and lipid profiles and to better protection against liver inflammation and oxidative stress, giving a superior level of liver protection in type 2 diabetic with hyperlipidemia.