Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo Matafome is active.

Publication


Featured researches published by Paulo Matafome.


Pharmacological Research | 2012

Methylglyoxal promotes oxidative stress and endothelial dysfunction.

Cristina Sena; Paulo Matafome; Joana Crisóstomo; Lisa Rodrigues; Rosa Fernandes; Paulo Pereira; Raquel Seiça

Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular diabetic complication.


British Journal of Pharmacology | 2011

Metformin restores endothelial function in aorta of diabetic rats

Cristina Sena; Paulo Matafome; Teresa Louro; Elsa Nunes; Rosa Fernandes; Raquel Seiça

The effects of metformin, an antidiabetic agent that improves insulin sensitivity, on endothelial function have not been fully elucidated. This study was designed to assess the effect of metformin on impaired endothelial function, oxidative stress, inflammation and advanced glycation end products formation in type 2 diabetes mellitus.


Endocrine | 2013

Methylglyoxal, obesity, and diabetes

Paulo Matafome; Cristina Sena; Raquel Seiça

Methylglyoxal (MG) is a highly reactive compound derived mainly from glucose and fructose metabolism. This metabolite has been implicated in diabetic complications as it is a strong AGE precursor. Furthermore, recent studies suggested a role for MG in insulin resistance and beta-cell dysfunction. Although several drugs have been developed in the recent years to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the mechanisms of MG formation, detoxification, and action. Furthermore, we review the current knowledge about its implication on the pathophysiology and complications of obesity and diabetes.


Experimental Physiology | 2010

Methylglyoxal‐induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction

Carla Figueira Bento; Rosa Fernandes; Paulo Matafome; Cristina Sena; Raquel Seiça; Paulo Pereira

Progressive microvascular complications are a main feature of diabetes and are associated with impairment of the angiogenic response. Methylglyoxal (MGO) has been implicated in the molecular events that lead to endothelial dysfunction in diabetes. In this study, we hypothesize that increased levels of MGO disrupt the ratio of vascular endothelial growth factor (VEGF) to angiopoietin 2 (Ang 2) secreted by retinal pigment epithelial (RPE) cells, which provides a key destabilizing signal that leads to apoptosis and decreased proliferation of retinal endothelial cells. Indeed, we show that MGO increases the levels of Ang 2 and dramatically decreases the levels of VEGF secreted by RPE cells in response to hypoxia. Downregulation of VEGF is likely to be related to decreased hypoxia‐inducible factor‐1α (HIF‐1α) protein levels and HIF‐1 transcriptional activity. Data further show that MGO‐induced imbalance in the VEGF/Ang II ratio significantly changes the levels of BAX and Bcl‐2 in endothelial cells. Moreover, this imbalance is accompanied by an increase in the activity of caspase‐3 and decreased proliferation of endothelial cells. Data obtained in cell culture systems are consistent with observations in retinas of diabetic animals, where increased availability of MGO is associated with changes in distribution and levels of HIF‐1α, VEGF and Ang 2 and increased microvascular permeability. In conclusion, the MGO‐induced imbalance in the VEGF/Ang 2 ratio secreted by retinal epithelial cells activates apoptosis and decreases proliferation of retinal endothelial cells, which are likely to contribute to endothelial dysfunction in diabetic retinopathy.


Diabetes-metabolism Research and Reviews | 2011

Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia

Paulo Matafome; Teresa Louro; Lisa Rodrigues; Joana Crisóstomo; Elsa Nunes; C. Amaral; Pedro Monteiro; A. Cipriano; Raquel Seiça

Non‐alcoholic fatty liver disease (NAFLD) and type 2 diabetes are associated with dyslipidaemia, inflammation and oxidative stress. However, the pathophysiology of NAFLD in type 2 diabetes with hyperlipidaemia is not fully known, as well as the utility of the commonly prescribed anti‐diabetic and lipid‐lowering drugs in ameliorating liver injury markers.


Archives of Physiology and Biochemistry | 2012

Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity.

Paulo Matafome; Daniela Santos-Silva; Joana Crisóstomo; Tiago B. Rodrigues; Lisa Rodrigues; Cristina Sena; Paulo Pereira; Raquel Seiça

Context:Adipose tissue is one of the first organs to develop insulin resistance even with moderate BMI. However, the contribution of developing hyperglycaemia and concomitant methylglyoxal increment to tissue dysfunction during type 2 diabetes progression was not addressed before. Methods:Young and aged Wistar and Goto-Kakizaki rats (non-obese model of type 2 diabetes) and a group of MG-treated W rats were used to investigate the chronic effects of hyperglycaemia and ageing and specifically MG-induced mechanisms. Results:Diabetic and aged rats showed decreased adipose tissue irrigation and interstitial hypoxia. Hyperglycaemia of diabetic rats leaded to fibrosis and accumulation of PAS-positive components, exacerbated in aged animals, which also showed decreased hipoadiponectinemia, increased MCP-1 expression and macrophage infiltration to glycated fibrotic regions. MG leaded to increased free fatty acids, hipoadiponectinemia, decreased irrigation, hypoxia and macrophage recruitment for glycated fibrotic regions. Conclusions:MG contributes to dysfunction of adipose tissue during type 2 diabetes progression.


European Journal of Pharmacology | 2011

Insulin and metformin may prevent renal injury in young type 2 diabetic Goto-Kakizaki rats.

Teresa Louro; Paulo Matafome; Elsa Nunes; Fernanda Xavier da Cunha; Raquel Seiça

Type 2 diabetes is increasing at epidemic proportions throughout the world, and diabetic nephropathy is the principal cause of end stage renal failure. Approximately 40% of patients with type 2 diabetes may progress to nephropathy and a good metabolic control can prevent the development of diabetic renal injury. The aim of our study was to evaluate, in young type 2 diabetic Goto-Kakizaki (GK) rats fed with atherogenic diet, the effects of the anti-diabetic compounds insulin, metformin and gliclazide on renal damage. GK rats fed with atherogenic diet showed increased body weight and fasting blood glucose, total cholesterol, triglycerides, C-reactive protein and protein carbonyl levels and lower HDL-cholesterol concentration; renal markers of inflammation and fibrosis were also elevated. All the anti-diabetic agents ameliorated fasting glycaemia and insulin resistance but only insulin and metformin were able to improve glycoxidation, fibrosis and inflammation kidney parameters. Our data suggest that insulin and metformin treatments, improving glicoxidative, inflammatory and fibrotic renal damage markers, play a key role in the prevention of diabetic nephropathy.


Acta Diabetologica | 2007

Soybean oil treatment impairs glucose-stimulated insulin secretion and changes fatty acid composition of normal and diabetic islets

Elsa Nunes; Francisco Peixoto; Teresa Louro; Cristina Sena; Maria S. Santos; Paulo Matafome; Paula I. Moreira; Raquel Seiça

We investigated the effect of sub-chronic soybean oil (SO) treatment on the insulin secretion and fatty acid composition of islets of Langerhans obtained from Goto-Kakizaki (GK), a model of type 2 diabetes, and normal Wistar rats. We observed that soybean-treated Wistar rats present insulin resistance and defective islet insulin secretion when compared with untreated Wistar rats. The decrease in insulin secretion occurred at all concentrations of glucose and arginine tested. Furthermore we observed that soybean-treated normal islets present a significant decrease in two saturated fatty acids, myristic and heneicosanoic acids, and one monounsaturated eicosenoic acid, and the appearance of the monounsaturated erucic acid. Concerning diabetic animals, we observed that soybean-treated diabetic rats, when compared with untreated GK rats, present an increase in plasma non-fasting free fatty acids, an exacerbation of islet insulin secretion impairment in all conditions tested and a significant decrease in the monounsaturated palmitoleic acid. Altogether our results show that SO treatment results in a decrease of insulin secretion and alterations on fatty acid composition in normal and diabetic islets. Furthermore, the impairment of insulin secretion, islet erucic acid and fasting plasma insulin levels are similar in treated normal and untreated diabetic rats, suggesting that SO could have a deleterious effect on β-cell function and insulin sensitivity.


Diabetologia | 2017

Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver

Joana F. Sacramento; Maria J. Ribeiro; Tiago B. Rodrigues; Elena Olea; Bernardete F. Melo; Maria P. Guarino; Rui Fonseca-Pinto; Cristiana R. Ferreira; Joana Coelho; Ana Obeso; Raquel Seiça; Paulo Matafome; Silvia V. Conde

Aims/hypothesisWe recently described that carotid body (CB) over-activation is involved in the aetiology of insulin resistance and arterial hypertension in animal models of the metabolic syndrome. Additionally, we have demonstrated that CB activity is increased in animal models of insulin resistance, and that carotid sinus nerve (CSN) resection prevents the development of insulin resistance and arterial hypertension induced by high-energy diets. Here, we tested whether the functional abolition of CB by CSN transection would reverse pre-established insulin resistance, dyslipidaemia, obesity, autonomic dysfunction and hypertension in animal models of the metabolic syndrome. The effect of CSN resection on insulin signalling pathways and tissue-specific glucose uptake was evaluated in skeletal muscle, adipose tissue and liver.MethodsExperiments were performed in male Wistar rats submitted to two high-energy diets: a high-fat diet, representing a model of insulin resistance, hypertension and obesity, and a high-sucrose diet, representing a lean model of insulin resistance and hypertension. Half of each group was submitted to chronic bilateral resection of the CSN. Age-matched control rats were also used.ResultsCSN resection normalised systemic sympathetic nervous system activity and reversed weight gain induced by high-energy diets. It also normalised plasma glucose and insulin levels, insulin sensitivity lipid profile, arterial pressure and endothelial function by improving glucose uptake by the liver and perienteric adipose tissue.Conclusions/interpretationWe concluded that functional abolition of CB activity restores insulin sensitivity and glucose homeostasis by positively affecting insulin signalling pathways in visceral adipose tissue and liver.


Journal of Bioenergetics and Biomembranes | 2014

Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status

S. Cardoso; Cristina Carvalho; Ricardo Marinho; Anabel Simões; Cristina Sena; Paulo Matafome; Maria S. Santos; Raquel Seiça; Paula I. Moreira

Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.

Collaboration


Dive into the Paulo Matafome's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge