Elsje Alessandra Quadrelli
University of Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elsje Alessandra Quadrelli.
Energy and Environmental Science | 2013
Gabriele Centi; Elsje Alessandra Quadrelli; Siglinda Perathoner
Replacement of part of the fossil fuel consumption by renewable energy, in particular in the chemical industry, is a central strategy for resource and energy efficiency. This perspective will show that CO2 is the key molecule to proceed effectively in this direction. The routes, opportunities and barriers in increasing the share of renewable energy by using CO2 reaction and their impact on the chemical and energy value chains are discussed after introducing the general aspects of this topic evidencing the tight integration between the CO2 use and renewable energy insertion in the value chain of the process industry. The focus of this perspective article is on the catalytic aspects of the chemistries involved, with an analysis of the state-of-the-art, perspectives and targets to be developed. The reactions discussed are the production of short-chain olefins (ethylene, propylene) from CO2, and the conversion of carbon dioxide to syngas, formic acid, methanol and dimethyl ether, hydrocarbons via Fischer–Tropsch synthesis and methane. The relevance of availability, cost and environmental footprints of H2 production routes using renewable energies is addressed. The final part discusses the possible scenario for CO2 as an intermediary for the incorporation of renewable energy in the process industry, with a concise roadmap for catalysis needs and barriers to reach this goal.
Journal of the American Chemical Society | 2015
Jonathan Bonnefoy; Alexandre Legrand; Elsje Alessandra Quadrelli; Jérôme Canivet; David Farrusseng
We present herein the first example of metal-organic frameworks postfunctionalized with peptides. Our microwave-assisted postsynthetic modification method yields enantiopure peptides anchored inside MOF cavities. Al-MIL-101-NH2, In-MIL-68-NH2, and Zr-UiO-66-NH2 were chosen as starting platforms. A single amino acid and various oligopeptides are grafted with yields up to 60% after a 30 min microwave-assisted coupling-deprotection sequence. This allows efficient preparation of a library of functional hybrid solids for molecular recognition applications such as sensing, separation, or asymmetric catalysis, as demonstrated here for the chiral aldol reaction.
Chemsuschem | 2015
Matthew B. Chambers; Xia Wang; Noémie Elgrishi; Christopher H. Hendon; Aron Walsh; Jonathan Bonnefoy; Jérôme Canivet; Elsje Alessandra Quadrelli; David Farrusseng; Caroline Mellot-Draznieks; Marc Fontecave
The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far.
Angewandte Chemie | 2002
Mathieu Chabanas; Elsje Alessandra Quadrelli; Bernard Fenet; Christophe Copéret; Jean Thivolle-Cazat; Jean-Marie Basset; Anne Lesage; Lyndon Emsley
Reference EPFL-ARTICLE-204460doi:10.1002/1521-3773(20011203)40:23 3.0.CO;2-XView record in Web of Science Record created on 2015-01-08, modified on 2017-12-03
Physical Chemistry Chemical Physics | 2012
Caterina Barzan; Elena Groppo; Elsje Alessandra Quadrelli; Vincent Monteil; Silvia Bordiga
Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.
Chemsuschem | 2011
Elsje Alessandra Quadrelli; Gabriele Centi
From the combination of knowledge and actions, someone can improve their skill and ability. It will lead them to live and work much better. This is why, the students, workers, or even employers should have reading habit for books. Any book will give certain knowledge to take all benefits. This is what this green carbon dioxide tells you. It will add more knowledge of you to life and work better. Try it and prove it.
Journal of Materials Chemistry | 2014
Stéphane Cadot; Laurent Veyre; Dominique Luneau; David Farrusseng; Elsje Alessandra Quadrelli
2,5-Dihydroxyterephthalic acid (H4dhtp) was synthesized on an 18 g scale by carboxylation of hydroquinone in molten potassium formate. The hydrated form of the Ni2(dhtp) MOF (also known as CPO-27-Ni and MOF-74(Ni)) was obtained in 92% yield by refluxing for 1 h a water suspension of the H4dhtp linker with an aqueous solution of nickel acetate. The ensuing characterization of the material (XRD, HRTEM, TGA, N2 adsorption at 77 K – SBET = 1233 m2 g−1) confirmed the formation of a metal–organic framework of at least equal quality to the ones obtained from the previously reported routes (CPO-27-Ni and MOF-74(Ni)), with a different morphology (namely, well-separated 1 μm platelets for the herein reported water-based route). The temperature dependence of the magnetic susceptibility was measured and satisfactorily simulated assuming a Heisenberg (H = −2JΣSiSi+1) ferromagnetic intrachain interaction (J = +8.1 cm−1) and an antiferromagnetic interchain interaction (J′ = −1.15 cm−1). Overall, the reaction in water appears to follow easily distinguishable steps, the first being the deprotonation of H4dhtp by an acetate counterion, leading to a soluble nickel adduct of the linker, en route to the MOF self-assembly.
Chemical Communications | 2004
Chloé Thieuleux; Elsje Alessandra Quadrelli; Jean-Marie Basset; Jens Döbler; Joachim Sauer
The silica-supported Zr(iv) dihydride [(triple bond)SiO)2ZrH2] reacts quickly and completely with methane to yield [(triple bond)SiO)2ZrMe2] through the intermediate [(triple bond)SiO)2ZrHMe], while its monohydride analogue [(triple bond)SiO)3ZrH] yields the monomethylated product [(triple bond)SiO)3ZrMe] slowly and incompletely.
Inorganic Chemistry | 2012
Xavier Solans-Monfort; Catherine Chow; Eric Gouré; Yasemin Kaya; Jean-Marie Basset; Mostafa Taoufik; Elsje Alessandra Quadrelli; Odile Eisenstein
DFT(B3PW91) calculations have been carried out to propose a pathway for the N(2) cleavage by H(2) in the presence of silica-supported tantalum hydride complexes [(≡SiO)(2)TaH(x)] that forms [(≡SiO)(2)Ta(NH)(NH(2))] (Science 2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)(2)SiO](2)}TaH(1) and {μ-O[(HO)(2)SiO](2)}TaH(3), labelled as (≡SiO)(2)TaH(x) (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)(2)TaH(η(2)-N(2)) and (≡SiO)(2)TaH(η(2)-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H(2), increase the electrophilicity of the resulting ligand (diazenido, N(2)H(-), and hydrazido, NHNH(2)(-), respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)(2)TaH(η(2)-HNNH), the H(2) molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO)(2)TaH(NH(2))(2), suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H(2) is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)(2)TaH(η(2)-HNNH)] from its ν(N-H) stretching frequency of 3400 cm(-1), to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding.
Chemistry: A European Journal | 2016
Christopher H. Hendon; Jonathan Bonnefoy; Elsje Alessandra Quadrelli; Jérôme Canivet; Matthew B. Chambers; Gwenaëlle Rousse; Aron Walsh; Marc Fontecave; Caroline Mellot-Draznieks
As a novel avenue for applications, metal-organic frameworks (MOFs) are increasingly used for heterogenizing catalytic molecular species as linkers into their crystalline framework. These multifunctional compounds can be accessed with mixed linkers synthesis or postsynthetic-exchange strategies. Major limitations still reside in their challenging characterization; in particular, to provide evidence of the genuine incorporation of the functionalized linkers into the framework and their quantification. Herein, we demonstrate that a combination of computational chemistry, spectroscopy and X-ray diffraction allows access to a non-destructive analysis of mixed-linker UiO-67-type materials featuring biphenyl- and bipyridine-dicarboxylates. Our UV/Vis-based methodology has been further applied to characterize a series of Rh-functionalized UiO-67-type catalysts. The proposed approach allows a recurrent key issue in the characterization of similar supported organometallic systems to be solved.