Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elvira Bramon is active.

Publication


Featured researches published by Elvira Bramon.


Nature | 2008

Large recurrent microdeletions associated with schizophrenia.

Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


Nature | 2009

Common variants conferring risk of schizophrenia

Hreinn Stefansson; Roel A. Ophoff; Stacy Steinberg; Ole A. Andreassen; Sven Cichon; Dan Rujescu; Thomas Werge; Olli Pietiläinen; Ole Mors; Preben Bo Mortensen; Engilbert Sigurdsson; Omar Gustafsson; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Anders D. Børglum; Annette M. Hartmann; Anders Fink-Jensen; Merete Nordentoft; David M. Hougaard; Bent Nørgaard-Pedersen; Yvonne Böttcher; Jes Olesen; René Breuer; Hans-Jürgen Möller; Ina Giegling

Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


Scopus | 2011

Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility

David Evans; Alexander Dilthey; M. Pirinen; Tetyana Zayats; C. C. A. Spencer; Z. Su; Céline Bellenguez; Colin Freeman; Amy Strange; Gilean McVean; Peter Donnelly; J. J. Pointon; David Harvey; L. H. Appleton; T. Wordsworth; Tugce Karaderi; C Farrar; Paul Bowness; B. P. Wordsworth; Grazyna Kochan; U. Opperman; M Stone; L. Moutsianis; Stephen Leslie; Tony J. Kenna; Gethin P. Thomas; Linda A. Bradbury; Patrick Danoy; Matthew A. Brown; M. Ward

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10−8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10−6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27–positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.


Schizophrenia Research | 2004

Meta-analysis of the P300 and P50 waveforms in schizophrenia

Elvira Bramon; Sophia Rabe-Hesketh; Pak Sham; Robin M. Murray; Sophia Frangou

OBJECTIVE To determine whether patients with schizophrenia have abnormalities in the P300 and P50 waves and to quantify the magnitude of any differences from controls. METHOD We conducted a systematic search for articles published between January 1994 and August 2003 that reported P50 or P300 measures in schizophrenic patients and controls. Metaregression analyses were performed using a random effects model. The pooled standardised effect size (PSES) was calculated as the difference between the means of the two groups divided by the common standard deviation. RESULTS We identified 46 studies suitable for analysis of P300 measures, including 1443 patients and 1251 controls. There were 20 P50 studies including 421 patients and 401 controls. The PSES for the P300 amplitude was 0.85 (95% CI: 0.65 to 1.05; p<0.001), and for the P300 latency was -0.57 (95% CI: -0.75 to -0.38; p<0.001). The PSES of the P50 ratio was -1.56 (95% CI: -2.05 to -1.06; p<0.001). There were no significant differences between patients and controls in P50 latency. Across-study variations in filters, task difficulty, antipsychotic medication and duration of illness did not influence the PSES significantly. CONCLUSIONS This meta-analysis confirms the existence of ERP deficits in schizophrenia. The magnitude of these deficits is similar to the most robust findings reported in neuroimaging and neuropsychology in schizophrenia.


Human Molecular Genetics | 2009

Disruption of the neurexin 1 gene is associated with schizophrenia

Dan Rujescu; Andres Ingason; Sven Cichon; Olli Pietiläinen; Michael R. Barnes; Timothea Toulopoulou; Marco Picchioni; Evangelos Vassos; Ulrich Ettinger; Elvira Bramon; Robin M. Murray; Mirella Ruggeri; Sarah Tosato; Chiara Bonetto; Stacy Steinberg; Engilbert Sigurdsson; T. Sigmundsson; Hannes Petursson; Arnaldur Gylfason; Pall Olason; Gudmundur Hardarsson; Gudrun A Jonsdottir; Omar Gustafsson; Ragnheidur Fossdal; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann; Per Hoffmann; Caroline Crombie; Gillian M. Fraser

Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data. We found 66 deletions and 5 duplications in NRXN1, including a de novo deletion: 12 deletions and 2 duplications occurred in schizophrenia cases (0.47%) compared to 49 and 3 (0.15%) in controls. There was no common breakpoint and the CNVs varied from 18 to 420 kb. No CNVs were found in NRXN2 or NRXN3. We performed a Cochran-Mantel-Haenszel exact test to estimate association between all CNVs and schizophrenia (P = 0.13; OR = 1.73; 95% CI 0.81-3.50). Because the penetrance of NRXN1 CNVs may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1 deletions affecting exons confer risk of schizophrenia.


Nature Genetics | 2009

Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region

Jeffrey C. Barrett; James C. Lee; Charles W. Lees; Natalie J. Prescott; Carl A. Anderson; Anne Phillips; Emma Wesley; K. Parnell; Hu Zhang; Hazel E. Drummond; Elaine R. Nimmo; Dunecan Massey; Kasia Blaszczyk; Tim Elliott; L Cotterill; Helen Dallal; Alan J. Lobo; Craig Mowat; Jeremy Sanderson; Derek P. Jewell; William G. Newman; Cathryn Edwards; Tariq Ahmad; John C. Mansfield; Jack Satsangi; Miles Parkes; Christopher G. Mathew; Peter Donnelly; Leena Peltonen; Jenefer M. Blackwell

Ulcerative colitis is a common form of inflammatory bowel disease with a complex etiology. As part of the Wellcome Trust Case Control Consortium 2, we performed a genome-wide association scan for ulcerative colitis in 2,361 cases and 5,417 controls. Loci showing evidence of association at P < 1 × 10−5 were followed up by genotyping in an independent set of 2,321 cases and 4,818 controls. We find genome-wide significant evidence of association at three new loci, each containing at least one biologically relevant candidate gene, on chromosomes 20q13 (HNF4A; P = 3.2 × 10−17), 16q22 (CDH1 and CDH3; P = 2.8 × 10−8) and 7q31 (LAMB1; P = 3.0 × 10−8). Of note, CDH1 has recently been associated with susceptibility to colorectal cancer, an established complication of longstanding ulcerative colitis. The new associations suggest that changes in the integrity of the intestinal epithelial barrier may contribute to the pathogenesis of ulcerative colitis.


Nature Genetics | 2012

Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke.

Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams

Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.


Molecular Psychiatry | 2011

Copy number variations of chromosome 16p13.1 region associated with schizophrenia

Andres Ingason; Dan Rujescu; Sven Cichon; Engilbert Sigurdsson; T. Sigmundsson; Olli Pietiläinen; Jacobine E. Buizer-Voskamp; Eric Strengman; Clyde Francks; Pierandrea Muglia; Arnaldur Gylfason; Omar Gustafsson; Pall Olason; Stacy Steinberg; Thomas V O Hansen; Klaus D. Jakobsen; Henrik B. Rasmussen; Ina Giegling; H.-J. Möller; Annette M. Hartmann; Caroline Crombie; Gillian M. Fraser; Nicholas Walker; Jan-Erik Lönnqvist; Jaana Suvisaari; Annamari Tuulio-Henriksson; Elvira Bramon; Lambertus A. Kiemeney; Barbara Franke; Robin M. Murray

Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 35 079 controls from 8 European populations for duplications and deletions at the 16p13.1 locus, using microarray data. We found a threefold excess of duplications and deletions in schizophrenia cases compared with controls, with duplications present in 0.30% of cases versus 0.09% of controls (P=0.007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P=0.00010) association with schizophrenia. The age of onset in duplication and deletion carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia.


Journal of Psychiatric Research | 2010

Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort

Lavinia Athanasiu; Morten Mattingsdal; Anna K. Kähler; Andrew Anand Brown; Omar Gustafsson; Ingrid Agartz; Ina Giegling; Pierandrea Muglia; Sven Cichon; Marcella Rietschel; Olli Pietiläinen; Leena Peltonen; Elvira Bramon; David A. Collier; David St Clair; Engilbert Sigurdsson; Hannes Petursson; Dan Rujescu; Ingrid Melle; Vidar M. Steen; Srdjan Djurovic; Ole A. Andreassen

We have performed a genome-wide association study (GWAS) of schizophrenia in a Norwegian discovery sample of 201 cases and 305 controls (TOP study) with a focused replication analysis in a larger European sample of 2663 cases and 13,780 control subjects (SGENE-plus study). Firstly, the discovery sample was genotyped with Affymetrix Genome-Wide Human SNP Array 6.0 and 572,888 markers were tested for schizophrenia association. No SNPs in the discovery sample attained genome-wide significance (P<8.7 x 10(-8)). Secondly, based on the GWAS data, we selected 1000 markers with the lowest P values in the discovery TOP sample, and tested these (or HapMap-based surrogates) for association in the replication sample. Sixteen loci were associated with schizophrenia (nominal P value<0.05 and concurring OR) in the replication sample. As a next step, we performed a combined analysis of the findings from these two studies, and the strongest evidence for association with schizophrenia was provided for markers rs7045881 on 9p21, rs433598 on 16p12 and rs10761482 on 10q21. The markers are located in PLAA, ACSM1 and ANK3, respectively. PLAA has not previously been described as a susceptibility gene, but 9p21 is implied as a schizophrenia linkage region. ACSM1 has been identified as a susceptibility gene in a previous schizophrenia GWAS study. The association of ANK3 with schizophrenia is intriguing in light of recent associations of ANK3 with bipolar disorder, thereby supporting the hypothesis of an overlap in genetic susceptibility between these psychopathological entities.

Collaboration


Dive into the Elvira Bramon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colm McDonald

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madiha Shaikh

South London and Maudsley NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge