Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elvira Pelosi is active.

Publication


Featured researches published by Elvira Pelosi.


Nature Cell Biology | 2007

MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation.

Laura Fontana; Elvira Pelosi; Paolo Greco; Serena Racanicchi; Ugo Testa; Francesca Liuzzi; Carlo M. Croce; Ercole Brunetti; Francesco Grignani; Cesare Peschle

We investigated the role of microRNAs (miRNA) 17-5p, 20a and 106a in monocytic differentiation and maturation. In unilineage monocytic culture generated by haematopoietic progenitor cells these miRNAs are downregulated, whereas the transcription factor acute myeloid leukaemia-1 (AML1; also known as Runt-related transcription factor 1, Runx1) is upregulated at protein but not mRNA level. As miRNAs 17-5p, 20a and 106a bind the AML1 mRNA 3′UTR, their decline may unblock AML1 translation. Accordingly, transfection with miRNA 17-5p–20a–106a suppresses AML1 protein expression, leading to M-CSF receptor (M-CSFR) downregulation, enhanced blast proliferation and inhibition of monocytic differentiation and maturation. Treatment with anti-miRNA 17-5p, 20a and 106a causes opposite effects. Knockdown of AML1 or M-CSFR by short interfering RNA (siRNA) mimics the action of the miRNA 17-5p–20a–106a, confirming that these miRNAs target AML1, which promotes M-CSFR transcription. In addition, AML1 binds the miRNA 17-5p–92 and 106a–92 cluster promoters and transcriptionally inhibits the expression of miRNA 17-5p–20a–106a. These studies indicate that monocytopoiesis is controlled by a circuitry involving sequentially miRNA 17-5p–20a–106a, AML1 and M-CSFR, whereby miRNA 17-5p–20a–106a function as a master gene complex interlinked with AML1 in a mutual negative feedback loop.


Nature Cell Biology | 2008

A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis

Catherine Labbaye; Isabella Spinello; Maria Teresa Quaranta; Elvira Pelosi; Luca Pasquini; Eleonora Petrucci; Mauro Biffoni; Eugenia Rosa Nuzzolo; Monia Billi; Robin Foà; Ercole Brunetti; Francesco Grignani; Ugo Testa; Cesare Peschle

MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects. In vitro assays showed that PLZF interacts with and inhibits the miR-146a promoter, and that miR-146a targets CXCR4 mRNA, impeding its translation. In megakaryopoietic cultures of CD34+ progenitors, PLZF was upregulated, whereas miR-146a expression decreased and CXCR4 protein increased. MiR-146a overexpression and PLZF or CXCR4 silencing impaired megakaryocytic (Mk) proliferation, differentiation and maturation, as well as Mk colony formation. Mir-146a knockdown induced the opposite effects. Rescue experiments indicated that the effects of PLZF and miR-146a are mediated by miR-146a and CXCR4, respectively. Our data indicate that megakaryopoiesis is controlled by a cascade pathway, in which PLZF suppresses miR-146a transcription and thereby activates CXCR4 translation.


European Respiratory Journal | 2006

Circulating haemopoietic and endothelial progenitor cells are decreased in COPD

P. Palange; Ugo Testa; Alice Huertas; L. Calabrò; Rosa Antonucci; Eleonora Petrucci; Elvira Pelosi; Luca Pasquini; A. Satta; Giuseppe Morici; M.A. Vignola; Maria Rosaria Bonsignore

Circulating CD34+ cells are haemopoietic progenitors that may play a role in tissue repair. No data are available on circulating progenitors in chronic obstructive pulmonary disease (COPD). Circulating CD34+ cells were studied in 18 patients with moderate-to-severe COPD (age: mean±sd 68±8 yrs; forced expiratory volume in one second: 48±12% predicted) and 12 controls, at rest and after endurance exercise. Plasma concentrations of haematopoietic growth factors (FMS-like tyrosine kinase 3 (Flt3) ligand, kit ligand), markers of hypoxia (vascular endothelial growth factor (VEGF)) and stimulators of angiogenesis (VEGF, hepatocyte growth factor (HGF)) and markers of systemic inflammation (tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-8) were measured. Compared with the controls, the COPD patients showed a three-fold reduction in CD34+ cell counts (3.3±2.5 versus 10.3±4.2 cells·µL−1), and a 50% decrease in AC133+ cells. In the COPD patients, progenitor-derived haemopoietic and endothelial cell colonies were reduced by 30–50%. However, four COPD patients showed progenitor counts in the normal range associated with lower TNF-α levels. In the entire sample, CD34+ cell counts correlated with exercise capacity and severity of airflow obstruction. After endurance exercise, progenitor counts were unchanged, while plasma Flt3 ligand and VEGF only increased in the COPD patients. Plasma HGF levels were higher in the COPD patients compared with the controls and correlated inversely with the number of progenitor-derived colonies. In conclusion, circulating CD34+ cells and endothelial progenitors were decreased in chronic obstructive pulmonary disease patients and could be correlated with disease severity.


The FASEB Journal | 2004

Transplantation of low dose CD34+Kdr+ cells promotes vascular and muscular regeneration in ischemic limbs

Paolo Madeddu; Costanza Emanueli; Elvira Pelosi; Maria Bonaria Salis; Anna Maria Cerio; Giuseppina Bonanno; Mariella Patti; Giorgio Stassi; Gianluigi Condorelli; Cesare Peschle

Hematopoietic progenitor cell transplantation can contribute to revascularization of ischemic tissues. Yet, the optimal cell population to be transplanted has yet to be determined. We have compared the therapeutic potential of two subsets of human cord blood CD34+ progenitors, either expressing the VEGF‐A receptor 2 (KDR) or not. In serum‐free starvation culture, CD34+KDR+ cells reportedly showed greater resistance to apoptosis and ability to release VEGF‐A, as compared with CD34+KDR− cells. When injected into the hind muscles in immunodeficient SCIDbg mice subjected to unilateral ischemia, a low number (103) of CD34+KDR+ cells improved limb salvage and hemodynamic recovery better than a larger dosage (104) of CD34+KDR− cells. The neovascularization induced by KDR+ cells was significantly superior to that promoted by KDR− cells. Similarly, endothelial cell apoptosis and interstitial fibrosis were significantly attenuated by KDR+ cells, which differentiated into mature human endothelial cells and also apparently skeletal muscle cells. This study demonstrates that a low number of CD34+KDR+ cells favors reparative neovascularization and possibly myogenesis in limb ischemia, suggesting the potential use of this cell population in regenerative medicine.


Journal of Clinical Investigation | 1995

Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis.

C Labbaye; Mauro Valtieri; T Barberi; E Meccia; B Masella; Elvira Pelosi; Gerolama Condorelli; Ugo Testa; Cesare Peschle

We have explored the expression of the transcription factors GATA-1, GATA-2, and NF-E2 in purified early hematopoietic progenitor cells (HPCs) induced to gradual unilineage erythroid or granulocytic differentiation by growth factor stimulus. GATA-2 mRNA and protein, already expressed in quiescent HPCs, is rapidly induced as early as 3 h after growth factor stimulus, but then declines in advanced erythroid and granulocytic differentiation and maturation. NF-E2 and GATA-1 mRNAs and proteins, though not detected in quiescent HPCs, are gradually induced at 24-48 h in both erythroid and granulocytic culture. Beginning at late differentiation/early maturation stage, both transcription factors are further accumulated in the erythroid pathway, whereas they are suppressed in the granulopoietic series. Similarly, the erythropoietin receptor (EpR) is induced and sustainedly expressed during erythroid differentiation, although beginning at later times (i.e., day 5), whereas it is barely expressed in the granulopoietic pathway. In the first series of functional studies, HPCs were treated with antisense oligomers targeted to transcription factor mRNA: inhibition of GATA-2 expression caused a decreased number of both erythroid and granulocyte-monocytic clones, whereas inhibition of NF-E2 or GATA-1 expression induced a selective impairment of erythroid colony formation. In a second series of functional studies, HPCs treated with retinoic acid were induced to shift from erythroid to granulocytic differentiation (Labbaye et al. 1994. Blood. 83:651-656); this was coupled with abrogation of GATA-1, NF-E2, and EpR expression and conversely enhanced GATA-2 levels. These results indicate the expression and key role of GATA-2 in the early stages of HPC proliferation/differentiation. Conversely, NF-E2 and GATA-1 expression and function are apparently restricted to erythroid differentiation and maturation: their expression precedes that of the EpR, and their function may be in part mediated via the EpR.


The FASEB Journal | 2004

Heart infarct in NOD-SCID mice: Therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells

Rosanna Botta; Erhe Gao; Giorgio Stassi; Désirée Bonci; Elvira Pelosi; Donna Zwas; Mariella Patti; Lucrezia Colonna; Marta Baiocchi; Simona Coppola; Xin Ma; Gianluigi Condorelli; Cesare Peschle

Hematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense investigation. Particularly, the contribution of these cells to angiogenesis and cardiomyogenesis in myocardial ischemia is not well established. In our studies, we induced myocardial infarct (MI) in the immunocompromised NOD‐SCID mouse model, and monitored the effects of myocardial transplantation of human CB CD34+ cells on cardiac function. Specifically, we compared the therapeutic effect of unseparated CD34+ cells vs. PBS and mononuclear cells (MNCs); moreover, we compared the action of the CD34+KDR+ cell subfraction vs. the CD34+KDR– subset. CD34+ cells significantly improve cardiac function after MI, as compared with PBS/MNCs. Similar beneficial actions were obtained using a 2‐log lower number of CD34+KDR+ cells, while the same number of CD34+KDR– cells did not have any effects. The beneficial effect of CD34+KDR+ cells may mostly be ascribed to their notable resistance to apoptosis and to their angiogenic action, since cardiomyogenesis was limited. Altogether, our results indicate that, within the CD34+ cell population, the CD34+KDR+ fraction is responsible for the improvement in cardiac hemodynamics and hence represents the candidate active CD34+ cell subset.


British Journal of Haematology | 2008

MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors

Paolo Romania; Valentina Lulli; Elvira Pelosi; Mauro Biffoni; Cesare Peschle; Giovanna Marziali

MicroRNAs (miRNAs) control basic biological functions and are emerging as key regulators of haematopoiesis. This study focused on the functional role of MIRN155 on megakaryocytic (MK) differentiation of human cord blood CD34+ haematopoietic progenitor cells (HPCs). MIRN155, abundantly expressed in early HPCs, decreases sharply during MK differentiation. Functional studies showed that enforced expression of MIRN155 impairs proliferation and differentiation of MK cells. Furthermore, HPCs transfected with MIRN155 showed a significant reduction of their MK clonogenic capacity, suggesting that down‐modulation of this miRNA favours MK progenitor differentiation. Consistent with this observation, MIRN155 down‐regulates, by directly binding to their 3′‐UTR, the expression of Ets‐1 and Meis1, two transcription factors with well‐known functions in MK cells. These results show that the decline of MIRN155 is required for MK proliferation and differentiation at progenitors and precursors level and indicate that sustained expression of MIRN155 inhibits megakaryopoiesis.


Oncogene | 2009

A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes

S. Careccia; S. Mainardi; A. Pelosi; A. Gurtner; Daniela Diverio; Roberta Riccioni; Ugo Testa; Elvira Pelosi; G. Piaggio; A. Sacchi; S. Lavorgna; Francesco Lo-Coco; G. Blandino; Massimo Levrero; Maria Giulia Rizzo

MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of critical cell processes such as apoptosis, cell proliferation and differentiation. A small set of miRNAs is differentially expressed in hematopoietic cells and seemingly has an important role in granulopoiesis and lineage differentiation. In this study, we analysed, using a quantitative real-time PCR approach, the expression of 12 granulocytic differentiation signature miRNAs in a cohort of acute promyelocytic leukemia (APL) patients. We found nine miRNAs overexpressed and three miRNAs (miR-107, -342 and let-7c) downregulated in APL blasts as compared with normal promyelocytes differentiated in vitro from CD34+ progenitors. Patients successfully treated with all-trans-retinoic acid (ATRA) and chemotherapy showed downregulation of miR-181b and upregulation of miR-15b, -16, -107, -223, -342 and let-7c. We further investigated whether the APL-associated oncogene, promyelocytic leukemia gene (PML)/retinoic acid receptor α (RARα), might be involved in the transcriptional repression of miR-107, -342 and let-7c. We found that PML/RARα binds the regulatory sequences of the intragenic miR-342 and let-7c. In addition, we observed, in response to ATRA, the release of PML/RARα paralleled by their transcriptional activation, together with their host genes, EVL and C21orf34α. In conclusion, we show that a small subset of miRNAs is differentially expressed in APL and modulated by ATRA-based treatment.


Biomarker research | 2014

CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies.

Ugo Testa; Elvira Pelosi; Arthur E. Frankel

Recent studies indicate that abnormalities of the alpha-chain of the interleukin-3 receptor (IL-3RA or CD123) are frequently observed in some leukemic disorders and may contribute to the proliferative advantage of leukemic cells. This review analyzes the studies indicating that CD123 is overexpressed in various hematologic malignancies, including a part of acute myeloid and B-lymphoid leukemias, blastic plasmocytoid dendritic neoplasms (BPDCN) and hairy cell leukemia.Given the low/absent CD123 expression on normal hematopoietic stem cells, attempts have been made at preclinical first, and then at clinical level to target this receptor. Since the IL-3R is a membrane receptor there are two relatively simple means to target this molecule, either using its natural ligand or neutralizing monoclonal antibodies. Recent reports using a fusion molecule composed by human IL-3 coupled to a truncated diphteria toxin have shown promising antitumor activity in BPDCN and AML patients.


Blood | 2009

NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls β-globin and G-CSF receptor expression

Linda M. Starnes; Antonio Sorrentino; Elvira Pelosi; Monica Ballarino; Ornella Morsilli; Mauro Biffoni; Simona Santoro; Nadia Felli; Germana Castelli; Maria Laura De Marchis; Gianfranco Mastroberardino; Marco Gabbianelli; Alessandro Fatica; Irene Bozzoni; Clara Nervi; Cesare Peschle

It is generally conceded that selective combinations of transcription factors determine hematopoietic lineage commitment and differentiation. Here we show that in normal human hematopoiesis the transcription factor nuclear factor I-A (NFI-A) exhibits a marked lineage-specific expression pattern: it is upmodulated in the erythroid (E) lineage while fully suppressed in the granulopoietic (G) series. In unilineage E culture of hematopoietic progenitor cells (HPCs), NFI-A overexpression or knockdown accelerates or blocks erythropoiesis, respectively: notably, NFI-A overexpression restores E differentiation in the presence of low or minimal erythropoietin stimulus. Conversely, NFI-A ectopic expression in unilineage G culture induces a sharp inhibition of granulopoiesis. Finally, in bilineage E + G culture, NFI-A overexpression or suppression drives HPCs into the E or G differentiation pathways, respectively. These NFI-A actions are mediated, at least in part, by a dual and opposite transcriptional action: direct binding and activation or repression of the promoters of the beta-globin and G-CSF receptor gene, respectively. Altogether, these results indicate that, in early hematopoiesis, the NFI-A expression level acts as a novel factor channeling HPCs into either the E or G lineage.

Collaboration


Dive into the Elvira Pelosi's collaboration.

Top Co-Authors

Avatar

Ugo Testa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Cesare Peschle

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Germana Castelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Marco Gabbianelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mauro Valtieri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Samoggia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Catherine Labbaye

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ernestina Saulle

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Luca Pasquini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Nadia Maria Sposi

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge